博碩士論文 100522009 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator戴安傑zh_TW
DC.creatorAN-jie Daien_US
dc.date.accessioned2013-9-12T07:39:07Z
dc.date.available2013-9-12T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100522009
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract財務危機預測問題長久以來都是一個重要且常被廣泛討論的主題,吸引了世界各地的投資者和研究學者的關注。若想要能夠準確地進行預測,選個好的預測模型就顯得十分重要,我們從文獻中可發現,在常見的資料集下,沒有一致推薦的預測模型可供我們解決財務危機預測問題。又最近研究顯示,集成學習(ensemble learning)比單一分類器來的好且穩定,因此本研究以集成學習為基底,設計出一個新的預測模型,期望此預測模型不僅能夠對付現有的財務危機資料集,對於一個未來沒看過的資料集,也能夠準確預測。zh_TW
dc.description.abstractFinancial crisis problem has been important and widely studied topic. Financial crisis prediction is receiving increasing attention of stakeholders and researchers in the worldwide. If you want to predict accurately, choose a good prediction model is very important, from the literature can be found , in the common data set, there is no consistant conclusion of the prediction model for us to solve the financial crisis prediction problem, and recent studies have shown that ensemble learning is good and stable than a single classifier, thus, this study base on ensemble learning, to design a new prediction model, expect this prediction model not only deal with existing financial crisis data sets, but also predict accurately about a future data sets that we have never seen.en_US
DC.subject集成學習zh_TW
DC.subject分類器zh_TW
DC.subject財務危機預測zh_TW
DC.subjectensemble learningen_US
DC.subjectclassifieren_US
DC.subjectfinancial crisis predictionen_US
DC.titleOR ensemble 應用於財務危機預測zh_TW
dc.language.isozh-TWzh-TW
DC.titleFinancial crisis prediction based on OR ensembleen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明