博碩士論文 101221016 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator林彥廷zh_TW
DC.creatorYen-ting Linen_US
dc.date.accessioned2014-8-29T07:39:07Z
dc.date.available2014-8-29T07:39:07Z
dc.date.issued2014
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=101221016
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract對於一般的向量值函數$u$,我們有$u = curl w + abla p$的分解。我們證明了當函數$u$的旋度、散度與邊界法向量在三維球上給定並滿足可解條件時,$u$的存在性與唯一性。我們先考慮了在三維的全空間和上半空間對應問題之情況及求解方法,並從這些方法推得在三維的球上這個特殊情形下,另一種建構解的方式和一個與橢圓方程正則理論相似的正則性理論。zh_TW
dc.description.abstractFor a general vector-valued function $u$, we have the decomposition $u = curl w + abla p$. We proved the existence and uniqueness of $u$ when its vorticity, divergence and normal trace are prescribed in the unit ball of $bR^3$ under the assumption that the solvability condition holds. We start from solving for the velocity for the case that the domain under consideration is $bR^3$ or $bR^3_+$, and learn from this experience to provide another approach of constructing the solution and prove a regularity theory similar to the elliptic regularity theory.en_US
DC.subject向量場zh_TW
DC.subject旋度zh_TW
DC.subject散度zh_TW
DC.subject邊界條件zh_TW
DC.subjectvector fielden_US
DC.subjectvorticityen_US
DC.subjectdivergenceen_US
DC.subjectboundary conditionen_US
DC.titleVector Fields With Given Vorticity, Divergence And The Normal Traceen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明