DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 童鵬哲 | zh_TW |
DC.creator | Peng-che Tung | en_US |
dc.date.accessioned | 2015-7-27T07:39:07Z | |
dc.date.available | 2015-7-27T07:39:07Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=101221020 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 我們討論的是Calderón-Zygmund算子在weighted Carleson measure spaces CMO^p_w(R^n)上的有界性。而這篇文章的主要目的,是證明了Calderón-Zygmund算子T,若是符合了T^∗1 = 0以及T的kernel有著的光滑性質的話,則在n/(n+ε) < p ≤ 1及w ∈ Ap(1+ε/n)的條件下, 算子T在CMO^p_w(R^n)是有界的。而另一方面,我們利用以上的證明手法,我們也可以得到對所有0 < p < ∞,單參數奇異積分算子在CMO^p_w(R^n)的有界性。 | zh_TW |
dc.description.abstract | We consider the Calderón-Zygmund operators on weighted Carleson measure spaces CMO^p_w(R^n). Our main purpose is to show that the Calderón-Zygmund operators T which satisfy T^∗1 = 0 and ε be the reqularity exponent of the kernel of T, then these operators are bounded on CMO^p_w (R^n) provided by n/(n+ε) < p ≤ 1 and w ∈ Ap(1+ε/n). Using the same argument above, we can also abtain the boundedness
of one-parameter singular integral operator T on CMO^p_w for 0 < p < ∞ . | en_US |
DC.subject | 加權CMO空間 | zh_TW |
DC.subject | Calderón-Zygmund 算子 | zh_TW |
DC.subject | Calderón-Zygmund operators | en_US |
DC.subject | Carleson measure spaces | en_US |
DC.subject | CMO | en_US |
DC.subject | Ap weight | en_US |
DC.subject | Hardy spaces | en_US |
DC.subject | boundedness | en_US |
DC.subject | one-parameter singular integral operator | en_US |
DC.subject | weighted Carleson measure spaces | en_US |
DC.subject | Hp | en_US |
DC.title | Calderón-Zygmund operators on weighted Carleson measure spaces | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Calderón-Zygmund operators on weighted Carleson measure spaces | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |