dc.description.abstract | Using daily precipitation data of 15 stations from Central Weather Bureau and global mean temperature from National Climate Data Center covering the period of 1961-2011, we find the changes of drought over Taiwan under the condition of the global warming by inter-annual method. Global warming leads to the increase in temperature which attributes to the water vapor availability, water-holding capacity in the atmosphere and the atmospheric stratification. Based on the temporal distribution of precipitation, and the inter-annual method to do the qualitative and quantitative analysis, we find that extreme heavy rainfall increases 113.19 % K^(-1), while extreme light rainfall decreases 60.66 % K^(-1). The results also imply the number of dry day is increasing under global warming.
In this research, we describe the change of drought over Taiwan according to the number of dry day, the number of consecutive dry day and the standardized precipitation index (SPI). The number of dry day increases 16.42 % for each degree Kelvin. Meanwhile, we discuss drought in northern, western and eastern areas by considering the prevailing winds in different seasons and topography. We also focus on drought in dry season starting from November 1st to the following April 30th. The results illustrate that both the number of dry day and consecutive dry day increase when temperature increase. Especially for the number of greater than 15 consecutive dry days. This number increases 52 days K^(-1) in western area while it increases about 12 days K^(-1) in northern area and 11 days K^(-1) in eastern area. Moreover, there is an increasing trend in the intensity of drought in dry season under global warming in northern and eastern areas. However, because of the increase of the heavy rainfall in western area, the quantitative analysis of SPI shows an increasing trend of the total precipitation in dry season.
| en_US |