dc.description.abstract | Heat pipe performance can be analyzed by two parameters, namely, thermal resistance and maximum heat transfer rate. In this study these two parameters are varied by changing four kinds of heat pipe parameters (Pipe length, pipe diameter, working temperature and wick thickness) and working fluids (water, methanol, ethanol and acetone) then analyzed by developing interactive computer software. Since empirical correlation can’t predict wick permeability and porosity accurately, experiments are carried out to find these values. Also the software is modified in accordance with the heat pipe experimental results at different heat pipe parameters to improve the prediction capability of computer software.
The heat pipe analysis results show that larger pipe length has no obvious effect on thermal resistance but reduces the maximum heat transfer rate. Larger pipe diameter, reduces the thermal resistance but increases the maximum heat transfer rate. Higher working temperature reduces thermal resistance but increases the maximum heat transfer rate when working fluid is water. For methanol and ethanol, as working temperature increases, thermal resistance increases and it also increases the maximum heat transfer rate. For acetone, as working temperature increases, thermal resistance increases but it reduces the maximum heat transfer rate. While for the case of wick thickness, as the wick thickness increases, both thermal resistance and maximum heat transfer rate increases. The result of working fluid analysis shows that except for water as working fluid, all other fluids has higher thermal resistance and lower maximum heat transfer rate.
| en_US |