dc.description.abstract | Awakening from sleep is a crucial event for survival in the animal kingdom, which associates with the capability of regaining the consciousness, the recovery of cognitive performances and the arousal under life threats. In modern brain science, the spontaneous transition from sleep to waking might reflect the dynamic processes of brain recovery, affected by several factors include sleep architecture before awakening, circadian phase, sleep homeostatic, age, or sleep disorder. Previous studies found that behavior performance decreased upon awakening, noted as sleep inertia. However, how the brain regulates upon awakening to wakefulness remains unclear. Therefore, we conducted simultaneous EEG and fMRI recordings to investigate the dynamic changes along sleep inertia. In this thesis, we compared the cortical EEG psychomotor vigilance task (PVT) activities and resting state functional connectivity in three time points upon awakening. In PVT, we found that P100 amplitude increased 30 min after awakening in Oz electrode. In the resting state, each frequency band was localized to different brain regions and did not shift to other region across session. The amplitude of frequency power presented a V-shaped or inverse V-shaped along the awakening session. In conclusion, 30 min after awakening could be the turning point for the dissipation of the sleep inertia effect and for the completeness of brain reorganization in wakefulness. | en_US |