DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 鄭雅文 | zh_TW |
DC.creator | Ya-Wen Cheng | en_US |
dc.date.accessioned | 2016-7-5T07:39:07Z | |
dc.date.available | 2016-7-5T07:39:07Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=103221010 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 我們要討論的是在CMO^p_b上的Calderon-Zygmund 算子有界性。令T是一個Calderon-Zygmund算子,如果Tb = 0,則M_bT在CMO^p_b上是有界的,其中p介於n/(n+(ε/2))和1之間,ε是一個關於算子T核的光滑性指數。相反地,如果M_bT在BMO_b = CMO^1_b上有界,則Tb = 0。 | zh_TW |
dc.description.abstract | In this paper, we study the boundedness of Calderon-Zygmund operator on the Carleson measure spaces CMO^p_b associated with para-accretive function b. Let T be a Calderon-Zygmund operator. If Tb = 0, then M_bT is bounded on CMO^p_b, for n/(n+(ε/2)), where ε is the regularity exponent of the kernel of T. Conversely, if M_bT is bounded on BMO_b = CMO^1_b, then Tb = 0. | en_US |
DC.subject | Calderon-Zygmund算子 | zh_TW |
DC.title | A note on Carleson measure spaces associated to para-accretive functions | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |