dc.description.abstract | The isolation system extend the period of the bridge and reduce the earthquake force which caused by bridge superstructure. However, the shortage is isolation system would lead to the displacement of the superstructure would be increased. In practice, the control system is chosen to decrease the displacement effect. If the bridge is built on the excellent soil properties, the foundation type could be chosen as direct foundation. As the result, when the earthquake happened, rocking would be caused on direct foundation. In this research, based on direct foundation of isolator bridges, a series of shaking table test was done. The goal of this experiment is to find the effect of adding passive control system when direct foundation shaking. Then, the accuracy of the numerical model would be considered by compare experimental data and numerical analysis. After make sure the accuracy of the numerical model, a five-span continuous isolated bridge modal which added viscous dampers would be built. Then, the best configuration and damper coefficient would be found by parameter analysis. The research result shows that viscous dampers could reduce the effect of the bridge. However, if damper coefficient is too large lead to damping force increase, direct foundation rocking would become serious. It would contribute to negative impact. As the result, appropriate damper coefficient could provide optimal influence. | en_US |