dc.description.abstract | In Taiwan, the mountains account for half of the areas in Taiwan. The mountains with altitude above 3,000 meters are more than 200. With abundant sedimentary environments in Taiwan, a lot of dip-slopes can be easily found in many regions. There are numerous dip-slope related disasters in recent years. For example, Linkendajun landslide in 1997, Hsiaoling landslide induced by 2009 Morakot Typhoon, Cidu section of Formosa Freeway landslide in 2010. Most of the above disasters are related to rainfalls, earthquakes and improper design of the stabilization system. It is crucial to understand the deformation and sliding behaviors of a dip slope when subjecting to triggering factors such as the above conditions.
In this study, we are going to discuss the deformation behaviors of dip-slopes characterized by interbedded sandstone and shale. In order to further realize dip-slope failure, this study simulates dip-slope sliding by using PFC3D and centrifuge models. The aim is to understand the dip-slope behaviors with different thicknesses of the layers, but in this study, we are not discussing layers with different material properties. In addition, we also simulate dip-slope sliding behaviors with different scales and boundary conditions, hoping to understand the sliding behaviors of dip-slopes.
According to the numerical simulations the results possesses the following characteristics: (1) Because the gravity increase and influenced by wet deterioration, the model will deform seriously. (2) In low water level, the sliding depth of formation No.3 is more deep and the range of sliding is less; In high water level, the sliding depth of formation No.3 is more shallow and the range of sliding is more. (3) In low water level, the porosity of toe of model become higher; In high water level, the porosity of toe of model become smaller. | en_US |