DC 欄位 |
值 |
語言 |
DC.contributor | 化學工程與材料工程學系 | zh_TW |
DC.creator | 劉思屏 | zh_TW |
DC.creator | Si-Ping Liu | en_US |
dc.date.accessioned | 2016-8-17T07:39:07Z | |
dc.date.available | 2016-8-17T07:39:07Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=103324051 | |
dc.contributor.department | 化學工程與材料工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 由於全球暖化和極端的天氣條件與二氧化碳在大氣中的含量有所關聯
,而目前的能源供應和使用沒有減少能源相關的溫室氣體排放跡象。因此,只有改變生產和消費路徑可以降低對化石燃料的依賴。所以發展低碳能源技術是至關重要的。許多機構預測,氫能和燃料電池技術的進步可以支持氣候變化和能源安全的目標。特別是可再生能源的氫提供未來低碳能源系統的靈活性和可持續性。
ZnIn2S4(ZIS)是能隙約為2.4電子伏特的可見光觸媒。在之前的研究,我們以微波水熱法製備ZIS奈米粒子。被包覆在ZIS中的金 - 銀納米殼(GS-NS)具有可調整的吸收光波段,利用表面電漿共振增強光催化產氫。然而,ZIS包覆GS-NS的覆蓋範圍和厚度沒有精確地控制。在這項研究中,我們將重點放在製備ZIS包覆二氧化矽核殼奈米粒子與可調整厚度的ZIS殼。控制了核殼粒子,使我們能夠研究結構與性質關係。我們的研究結果表示,在二氧化矽表面上的表面改質促進ZIS的成核,從而導致均勻的包覆。此外,ZIS殼的厚度可容易地使用微波水熱合成調整。因此,本研究找出簡單的方法以產生一個更複雜的結構(GS-NS@dielectric@photocatalyst)優化太陽能產氫。 | zh_TW |
dc.description.abstract | Up to date, more and more evidences show that global warming and extreme weather conditions are associated with the CO2 level in atmosphere. Current energy supply and use do not be seen to reduce energy-related green-house-gas emission. Therefore, only changes in production and consumption path can decrease the dependence on fossil fuels. Developing low-carbon energy technologies is critical. Many agencies projected that the advances in hydrogen and fuel cell technologies can support climate change and energy security goals. In particular, hydrogen from renewable energies provides flexibility and sustainability for future low-carbon energy systems.
ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst with energy band gap of ~2.4 eV. In our previous work, we developed a microwave-assisted hydrothermal method to generate ZIS particles. The gold-silver nanoshells (GS-NS) with tunable absorption were embedded in ZIS matrix for plasmonic-enhanced photocatalytic hydrogen production. However, the coverage and thickness of ZIS on top of GS-NS were not precisely controlled. In this work, we focused on preparing SiO2@ZIS core-shell nanoparticles with tunable thickness of ZIS shells. Control over the core-shell particles enables us to study structure-property relations. Our experimental findings showed that the surface modification on SiO2 surfaces promoted nucleation of ZIS, leading to a homogeneous coverage. In addition, the thickness of ZIS shell can be easily tuned using microwave-assisted hydrothermal synthesis. Thus, our facile procedure paves the way to generate a more complex structure, GS-NS@dielectric@photocatalyst, for optimization of solar hydrogen
production. | en_US |
DC.subject | 光觸媒 | zh_TW |
DC.subject | 產氫 | zh_TW |
DC.subject | 核殼結構 | zh_TW |
DC.subject | photocatalyst | en_US |
DC.subject | hydrogen evolution | en_US |
DC.subject | core-shell structure | en_US |
DC.title | 微波水熱法製備SiO2@ZnIn2S4奈米粒子及其光催化產氫研究 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Photocatalytic Hydrogen Evolution from SiO2@ZnIn2S4 Nanoparticles Synthesized Using Microwave-assisted Hydrothermal Method | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |