dc.description.abstract | With the development of science and technology, new plastics are constantly being discovered by people, and they are widely applied in daily life and industrial development; after the successful development of thermoplastic polyester elastomer (TPEE), it has higher performance and good value in practical use. Compared with engineering plastics, it has feature of higher strength and longer lifetime. However, thermoplastic polyester elastomers are not easy to be molded by mechanical processing due to their soft texture. Existing molding methods mostly use extrusion, injection, and blow molding. The molds and peripheral accessories required for molding must be prepared before production. However, the design change requests often occur in the process of initating sample design till mass production. If you fail to conduct sample production and testing before mass production, figure out the places that need to be modified and rush into mold manufacturing, subsequent derivative mold modification needs, the cost of failure and mold failure Modifying the time cost of waiting is not a small expense. This article applies additive manufacturing technology (AM) and thermoplastic polyester elastomer with Taguchi method analysis to obtain the best modulus of resilience of thermoplastic polyester elastomer.
Based on the above, this study uses Fused Deposition Modeling (FDM) to print thermoplastic polyester elastomers, and obtains the best elastic modulus through the parameters that can be controlled by the printing equipment. The process parameters used in this experiment are nozzle diameter, nozzle temperature, and layer thickness; Taking Taguchi experimental as design, applying L4 orthogonal table for the experiment, and using analysis of variance (ANOVA) to figure out significant control factor which affects the result. Through the experimental results, in terms of elastic modulus, the S/N response diagram of the quality characteristic response table shows that the best combination is nozzle diameter 0.6 mm, nozzle temperature 230°C, and layer thickness 0.15 mm. According to the analysis of variance to find the significant control factors, comparing the quality characteristics response table and the parameters obtained by ANOVA, the results of the optimized combination of the two comparisons are the same, so that the accuracy of the experiment can be verified. | en_US |