dc.description.abstract | As technology advances, the demands of transmission rate and transmission quality get higher. In order to solve this problem, many studies were proposed, such as proper base station placements, pico cells deployments, etc.. However, deployment of multiple macro and pico cells always causes interference with each other. Enhanced Inter Cell Interference Coordination (eICIC) was proposed as one of the possible solutions to deal with the interference in the macro/pico co-existence heterogeneous network. Generally, Macro cell will cause interference to the User Equipments (UEs) served by pico base station due to the high transmission power from macro base station. eICIC involves two mechanisms to improve total throughput, first is Cell Range Extension (CRE), UEs connect to the cell due to its reference signal receive power (RSRP). However, CRE add some specific value to calculating small cells power for more UEs serving by small cells. Another mechanism is Almost Blank Subframe (ABS), when small cells serving for UE would suffer interference form Macro cell, and ABS decrease the interference by stopping transfer traffic in specific times in macro cell.
This thesis studies the effects among the CRE, ABS, and the transmission power transmitted by the macro base station in eICIC and proposes the dynamic parameters adjustment algorithm of the above three mechanism for the moveable UE environment.Simulations were performed to investigate the performance of the proposed algorithm. The simulation results show that the proposed algorithm can effectively adjust the parameters of the above three mechanism and, therefore, has better throughput when comparing to the other schemes. | en_US |