博碩士論文 103826010 完整後設資料紀錄

DC 欄位 語言
DC.contributor系統生物與生物資訊研究所zh_TW
DC.creator黃信哲zh_TW
DC.creatorOscar Haungen_US
dc.date.accessioned2016-7-27T07:39:07Z
dc.date.available2016-7-27T07:39:07Z
dc.date.issued2016
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=103826010
dc.contributor.department系統生物與生物資訊研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文提出一種建立於感測器融合(Sensor Fusion)架構的人體姿勢模態辨識之非監督學習演算法。該架構包含小型穿戴式的生醫電子偵測儀器以及相應的機械學習分析技術。架構中利用輕量化的偵測器感測人體姿勢訊號,並使用雲端服務傳輸至個人電子載具。同時研發出一種機械學習分析技術進行數據的運算與分群,以達到人體姿態的識別與資料庫的建立。該方法架構於量子力學的密度泛函理論(Density Functional Theory):利用Hamiltonian密度以及Lagrangian密度分別估計資料點機率密度函數 I 之群數以及資料邊界。除可藉由此大幅簡化系統的計算複雜度以及提升可靠度與效率,更可同時計算資料點間相互的強度與連結性,以尋找資料群的邊界進行分群。本技術針對長期實驗可用以建立個人資料數據庫:除了準確偵測與分析個別人體姿態,亦藉由資料庫更新使得各種姿態頻率的判定更加精確。在這種長期的生理訊號的分析下可以找出各種人體可能發生的病灶,例如脊椎側彎等。短期實驗可用以意外事故肇因分析以及提前的警訊通知,如老人摔倒、幼兒翻身等。除可節省大量人力、物力資源與數據資料的佔用,同時具備更高的可信度與客觀性,乃至於爾後技術的商業化。zh_TW
dc.description.abstractThe thesis proposes an unsupervised leaning algorithm for human posture pattern recognition constructed in the framework of Sensor Fusion. The framework included a small wearable biomedical electronic sensing device and a corresponding analytical technique of machine learning. By means of the proposed sensing device, the sensed electronic signals would be transmitted to the personal electronic carriers through the cloud service. Meanwhile, the proposed algorithm would analyze the cluster behavior so that the personal database and posture patterns would then be constructed wherein. The algorithm was based on the density functional theory in the Quantum Mechanics. Using the Hamiltonian density functional and the Lagrangian density functional, the cluster number and the corresponding boundary of each cluster of a specific data probability density function I can be estimated. The proposed algorithm can not only dramatically reduce the computational complexity and reinforce the reliability and the efficiency, but also estimate the significance and the connectivity within data points to find the boundaries of clusters for further data clustering. For long-term observations, the proposed technique can be used to construct a customized database for sensing and analyzing the personal posture patterns, and also to classify each posture frequency by updating the database. Under this scenario, the possible lesions might be specified, such as the scoliosis and so forth. For short-term observations, it can be used for analysis of accident events and alert notification, such as elderly falls, children turn around, and so forth. Therefore, the proposed technique can save unnecessary costs caused from human interventions, material resources, and the occupation of storage. It also has higher credibility and objectivity, and even for the further commercialization.en_US
DC.subject姿勢模態辨識zh_TW
DC.subject雲端服務zh_TW
DC.subject機械學習分析技術zh_TW
DC.subjecthuman posture pattern recognitionen_US
DC.subjectcloud serviceen_US
DC.subjectmachine learningen_US
DC.title基於密度泛函理論的人體姿勢模態識別之非監督學習方法zh_TW
dc.language.isozh-TWzh-TW
DC.titleUnsupervised learning of human posture pattern recognition based on the density functional theoryen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明