DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 黃陶容 | zh_TW |
DC.creator | TAO-RONG HUANG | en_US |
dc.date.accessioned | 2017-6-19T07:39:07Z | |
dc.date.available | 2017-6-19T07:39:07Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104221003 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 令X=(X_1,…,X_q)表 q維常態分布之隨機向量。假設X 之q 個分量之共同期望值為 μ ,共同變異數為σ^2 ,假設X 之任一對分量之共同相關係數為 ρ ,根據樣本(X_1i,…,X_qi ) i = 1,…,n,本文之目的在計算參數 μ,σ^2 及 ρ 之最大概似估計式,並據以得到參數之區間估計及檢定。 | zh_TW |
dc.description.abstract |
Let X=(X_1,…,X_q) denote a q-dimensional Gaussian vector. Assume that each component of X has the same meanμand varianceσ^2. Assume that each pair of the components of X has the same correlation coefficient.Based on a sample (X_1i,…,X_qi ) i = 1,…,n,the purpose of this paper is to find the maximum likelihood estimators of μ ,σ^2 and ρ from which confidence intervals and tests for μ ,σ^2 and ρ can be obtained. | en_US |
DC.subject | 高維高斯分布同值參數的最大概似推論 | zh_TW |
DC.subject | 最大概似估計式 | zh_TW |
DC.subject | 中央極限定理 | zh_TW |
DC.subject | 區間估計及單一參數檢定 | zh_TW |
DC.subject | 同值檢定 | zh_TW |
DC.title | 高維高斯分布同值參數的最大概似推論 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |