博碩士論文 104225019 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator賴志嘉zh_TW
DC.creatorJhih-Jia Laien_US
dc.date.accessioned2017-7-6T07:39:07Z
dc.date.available2017-7-6T07:39:07Z
dc.date.issued2017
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104225019
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在古典的統計理論當中,統計量的精準評估通常並不把模型選取納入考量。然而,若是先以資料為基準選取適合的模型,並以此模型計算出我們有興趣的統計估計量;這個估計量的值將在模型與模型的邊界形成不連續的斷面。換句話說,考慮模型選取的統計估計量,會因選取不同模型而有著不連續的跳動。為了解決此一問題,Efron在2014年提出了平滑拔靴法,透過模型平均的方式將此不連續的跳動平滑化來提升統計量的精準度。本研究將以此方法為基礎,在考慮模型不確定的狀況下對隱馬可夫模型進行統計量的精準評估。更進一步的,為了節省拔靴法下隱馬可模型的大量計算,在研究中借助高斯混和模型更快的完成拔靴法。實際上,高斯混和模型可以視為隱馬可夫模型的一個特殊例子。最後,給出股票市場的實例分析。zh_TW
dc.description.abstractIn classic statistical theory, accuracy assessments of estimators are usually made without taking model selection into account. However, Selection-based estimates change values discontinuously at the boundaries of model regimes. Bootstrap smoothing, which is provided by Efron (2014), is a technique can smooth such these “jumpy” estimates. In this thesis, we apply this method in Hidden Markov Models (HMM) to construct a better confidence interval under model uncertainty. Moreover, we reduce the computation burden in bootstrap framework assisted by Gaussian mixture models, which can be considered a special case of HMMs. An empirical study is applied on the stock market.en_US
DC.subject裝袋算法zh_TW
DC.subject平滑拔靴法zh_TW
DC.subject隱馬可夫模型zh_TW
DC.subject赤池信息量準則zh_TW
DC.subject模型平均zh_TW
DC.subjectBaggingen_US
DC.subjectBootstrap smoothingen_US
DC.subjectHidden Markov modelsen_US
DC.subjectAICen_US
DC.subjectModel averagingen_US
DC.titleEstimation and Accuracy After Model Selection in Hidden Markov Modelsen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明