dc.description.abstract |
In this paper, we use the epitaxy wafer of InP Substrates to make the PIN structure of the Mesa-type light detector, and the surface of the element was treated with a solution of ammonium sulfide ((NH4) 2Sx), to further explore the effect of Vulcanization characteristics on the characteristics of the element.. After the element in the paper by vulcanization treatment, showing some good component characteristics, such as low leakage current, low capacitance and better high frequency characteristics. In order to block the leakage current, we further use silicon nitride (SiN) plus silicon dioxide (SiO2) multilayer passivatio. Calculate, measure and analyze trends and eye pattern of I-V and C-V.
Compared with the planar structure, the advantages of mesa-type structure are low parasitic capacitance, because the parasitic area around the element is removed during the manufacturing process. So in the same light area, the mesa-type structure has a lower capacitance value.
First of all, we explore the use of ammonium sulfide solution, made of indium phosphide light detector on the surface passivation treatment, to study its effect on component characteristics, and to compare the results with those without vulcanization. From the experimental results we know that the surface of indium phosphide after vulcanization treatment, in addition to remove the original oxide layer of the surface,
the abler to form a sulfur bond on the surface of the semiconductor to prevent re-oxidation, and therefore can effectively reduce the surface bonding Charge and the corresponding capacitance. When the dark current is reduced from 6.46 × 10-11 A to 4.56 × 10-11 A at -10 V, the capacitance value is reduced from 0.534 pF to 0.313 pF at a voltage of 0 V; reduced from 0.294 pF to 0.169 at bias -5V PF. Thus, the vulcanized element has better electrical characteristics.
On the other hand, in order to more effectively block the leakage current, we use silicon nitride (SiN) has a good ladder coverage, and silicon dioxide (SiO2) has the characteristics which can grow to a certain thickness without cracking, the silicon nitride superimposed on silicon dioxide is formed into a multilayer passivatio passivation layer and is compared with a single layer of silicon nitride passivation layer.
If the element is treated with ammonium sulfide ((NH4) 2Sx) solution, the dark current is reduced from 4.56 × 10-11 A to 2.37 × 10-11A at -10 V. It is proved that the multilayer passivatio can effectively combine the advantages of the two materials and effectively block the leakage current. And in the eye pattern to verify the production of the element data transmission can reach 12.5Gbit / sec and clearly see the eye pattern (no error). | en_US |