博碩士論文 104322001 完整後設資料紀錄

DC 欄位 語言
DC.contributor土木工程學系zh_TW
DC.creator沈世涵zh_TW
DC.creatorShih-Han Shenen_US
dc.date.accessioned2018-8-22T07:39:07Z
dc.date.available2018-8-22T07:39:07Z
dc.date.issued2018
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104322001
dc.contributor.department土木工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract臺灣地處環太平洋地震帶,板塊運動致使斷層活動頻繁,強烈的地震波,會造成岩盤錯動、地層液化、邊坡滑動等上覆土層的永久變形,皆會對鄰近斷層帶的地上或地下結構物與設施造成嚴重損毀。因此瞭解斷層跡影響範圍及斷層與土層中結構物之互制關係,可作為近斷層區域樁基礎規劃與設計的參考,減少人員傷亡。 本試驗探討於近斷層帶,單樁與斷層錯動面之距離對樁土互制行為之影響。並探討點承樁與摩擦樁於相同試驗條件下反應之異同。本試驗透過斷層錯動模擬試驗箱,在離心重力場60g的情況下,模擬逆斷層錯動行為。 試驗結果顯示,斷層跡之發展形態並不受樁基礎之種類或位置影響,皆由基盤往地表發展,生成順序則由下盤往上盤產生。地表面之崖坡抬升、土表變形機制,與基樁位置相關,但與基樁之種類無關。當樁基礎愈靠近斷層錯動面,剪裂帶之寬度則有愈狹窄的趨勢;樁身所量測之彎矩愈大。但最大彎矩值並非一定發生於最大錯動量之時。尚須考慮土壤與基樁間位移等交互影響作用。zh_TW
dc.description.abstractPlate motion causes fault activity frequently because Taiwan is situated on the circum Pacific belt, resulting in the permanent displacement of the upper overlying layer like dislocation of the bedrock, ground liquefaction, slope sliding. Due to the reasons above, the construction on the ground or underground would be severely damaged near the fault area. To know the range for the trail of the fault and the interaction between the fault and the soil layer, the reference has to be taken for the design and planning of the pile foundation in the near-fault area. This research includes the distance between the single pile and the surface of the fault dislocation, investigating the behavior of the interaction between the pile and the soil. Point bearing pile and the friction pile would be compared in the same testing condition as well. In the experiment, the behavior of the dislocation of the reverse fault is simulated by using fault simulation container with 60g in the centrifugal gravity field. The results indicate that the trail of the fault develops from the bedrock to the ground and generates from the lower plate to the upper plate instead of the type of the pile or the location of the pile. The slope uplift on the ground, soil surface deformation mechanism correlate with the location of the pile rather than the type of the pile. The width of the shear zone gets narrower as the pile foundation gets closer to the surface of the fault dislocation. Although the moment measured from the pile gets larger at the same time, the maximum moment may not occur at the maximum displacement. The interaction like the soil and the distance of the piles should be considered as well.en_US
DC.subject離心模型試驗zh_TW
DC.subject逆斷層zh_TW
DC.subject單樁zh_TW
DC.subjectCentrifugal model testen_US
DC.subjectreverse faulten_US
DC.subjectsingle pileen_US
DC.title以離心模型試驗探討逆斷層作用下單樁與土壤互制反應zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明