博碩士論文 104324071 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學工程與材料工程學系zh_TW
DC.creator鄭皓謙zh_TW
DC.creatorHao-Chien Chengen_US
dc.date.accessioned2017-7-18T07:39:07Z
dc.date.available2017-7-18T07:39:07Z
dc.date.issued2017
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104324071
dc.contributor.department化學工程與材料工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究主旨為開發鈣鈦礦太陽能電池無毒製程。此想法始於配製一步驟旋塗法的鈣鈦礦前驅液時,發現PbI2粉末與CH3NH3I粉末於常溫下混合時可以直接反應成鈣鈦礦。因此本研究藉由控制CH3NH3I粉末與PbI2薄膜的反應時間,來探討固相反應的可行性與成膜性質,並可避免使用有毒溶劑。經過材料晶體、表面形貌及元件光電性質的分析,並加入熱退火程序優化CH3NH3PbI3鈣鈦礦膜,發展出無毒溶劑之乾式反應鈣鈦礦膜製程,並用於鈣鈦礦太陽能電池中。在p-i-n結構的鈣鈦礦太陽能電池中,蒸鍍PbI2搭配固相CH3NH3I反應製備小電池的光電轉換效率可達15.26%,5cm × 5cm之次模組效率可達11.16%。在n-i-p結構的鈣鈦礦太陽能電池中,以固相反應搭配旋塗製備之PbI2層,其小電池效率達17.74%¬,5cm × 5cm次模組可達12.27%,進一步再放大面積,製作10cm × 10cm次模組,效率達6%。 另一方面,本研究以電鍍沉積方式製備PbO與PbO2膜,再與CH3NH3I反應成CH3NH3PbI3鈣鈦礦膜,並探討CH3NH3I濃度對於電鍍製程之鈣鈦礦層的結晶與形貌影響以及用於鈣鈦礦太陽能電池的性能差異。在CH3NH3I濃度探討中得到最佳濃度為10mg/ml,其在搭配電鍍製備PbO製程與PbO2製程的電池光電轉化效率分別達到11.72%與11.05%。其中,以低濃度CH3NH3I溶液反應的鈣鈦礦結晶較大,而在高濃度CH3NH3I溶液反應時,因為會有回溶再結晶之現象,因此可以降低鈣鈦礦層的粗糙度。最後,將電鍍之PbO與PbO2膜層結合CH3NH3I固相反應,所製備之鈣鈦礦太陽能電池光電轉換效率分別可達9.15%與8.33%。zh_TW
dc.description.abstract The abstract of this study is developing non-toxic perovskite solar cells fabrication process. We found that Pbl2 and CH3NH3I powder can react and form perovskite directly at room temperature. Therefore, we can investigate the feasibility of solid state reaction and film forming properties by controlling the reaction time of CH3NH3I powder and PBI2 film. In addition, toxic solvent is less needed in this process. By analyzing materials crystalline, surface morphology and photoelectric characteristics and optimizing the thermal annealing process, we are able to develop non-toxic dry process to form perovskite and apply to solar cells. In p-i-n type structure solar cells, fabricated by vapor deposited PbI2 with solid state reacted CH3NH3I, power conversion efficiency (PCE) of small size cells and 5cm × 5cm sub-modules is up to 15.26 % and 11.16 %. On the other hand, in n-i-p type structure solar cells, fabricated by spin coated PbI2 with solid state reacted CH3NN3I, PCE of small size cells and 5cm × 5cm sub-modules is up to 17.74 % and 12.27 %, respectively. Further, PCE approach to 6% when we enlarges the solar cells area to 10cm × 10cm sub-modules. On the other hand, this study use electroplating deposition method to fabricate PbO and PbO2 film, then react with CH3NH3I to form CH3NH3PbI3 perovskite thin film. We investigate the effect of CH3NH3I concentration in electroplating process with the morphology influences and the performance of perovskite solar cells. The optimized CH3NH3I concentration is 10 mg/ml. The PCE of solar cells by PbO and PbO2 fabrication process is 11.72 % and 11.05 %. In low CH3NH3I concentration fabrication process, larger perovskite grain size can be observed. Yet, in high CH3NH3I concentration fabrication process, CH3NH3I will re-dissolve and reduce the roughness of perovskite. In the final stage, the electroplated PbO and PbO2 thin film based perovskite solar cells through solid state reaction process can reach the efficiency of 9.15 % and 8.33 %, respectively, under 100 mW/cm2 (AM1.5G).en_US
DC.subject鈣態礦zh_TW
DC.subject太陽能電池zh_TW
DC.subjectPerovskiteen_US
DC.subjectSolar Cellsen_US
DC.title利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleInvestigation of Solid State Reaction and Electrodeposition Process for Perovskite Solar Cellen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明