dc.description.abstract | Heavy metal pollution in aquatic environment has drawn great attention for years. Though copper (Cu) is a trace element, also has toxic effects on human health and environment. Therefore, developing a fast and accurate sensor for Cu analysis is important. In this study, the gold nanoparticles/chitosan-single walled nanotubes modified glassy carbon electrode (Au/chitosan-SWCNT/GCE) was prepared for detection of Cu(II). The liner-sweep voltammetry method (LSV) was used to analyze Cu(II) and the gold nanoparticles were deposited on the single-walled nanotube through electroplating for enhance the reactivity of electrode. The optimum electroplating conditions of electrode preparation were -0.6 V, 0.5 mM HAuCl4, 300 s, and 0.1% chitosan. Besides, the optimum conditions of scanning Cu(II) were 0.1 M HCl (supporting electrolyte) with scan rate of 0.2 Vs-1. The range of scan potential was from 1.0 to -0.6 V and the detection limit of Cu(II) was 3.24 ppb. The interferences of Pb(II), Cr(III), Cr(VI), As(III), As(V), Zn(II), Cd(II), and Fe(III) ions were also investigated. The results indicated that, except Pb(II) and As(III) , the metal ions used in this work had no effects on the peak current of Cu (error less than 10%). However, Pb(II) and As(III) increased the peak current of Cu, it might be because that both metals could also chelate with chitosan. The Au/chitosan-SWCNT/GCE prepared in this study presents lots of attractive features for Cu(II) detection, such as simple preparation method, high sensitivity, good reproducibility, low detection limit, and quick current response. Thus, the modified electrode may be an available sensor for Cu(II) analysis via LSV and applied in environmental pollutant monitoring. | en_US |