博碩士論文 104426604 完整後設資料紀錄

DC 欄位 語言
DC.contributor工業管理研究所zh_TW
DC.creator阮恆江英zh_TW
DC.creatorNguyen Hang Giang Anhen_US
dc.date.accessioned2022-5-10T07:39:07Z
dc.date.available2022-5-10T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104426604
dc.contributor.department工業管理研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究考慮了一個並行批量處理機器的問題,以在任意批量、不兼容系列、開始時間窗口的約束和適度決定下達到最小化製造時間。本研究首先通過混合整數程序化模型來格式化問題,並且也提供了所研究問題的下界。但因爲研究問題為NP-Hard且因應實務上須能解決大的問題,本研究亦將發展了一種基於分解的啟發式算法和進化算法,以便在計算時間作為一個側重點時獲得大規模問題的近似最優解。二維節約函數被引入來量化時間和容量空間被浪費的值。對於遺傳算法,我們提出了用於編碼的二維矩陣和一維表示,以及適當的二維交叉和突變以產生後代。此外,此遺傳算法旨在改善基於已開發分解的啟發式算法的解決方案品質,該啟發式被用作已開發遺傳算法的初始解。計算實驗表明,所提出的啟發式算法對於小規模問題的執行表現良好,並且可以在合理的計算時間內有效地處理大規模問題。此外,計算結果還表明,本研究提出的啟發式算法在答案品質 (Solution quality) 方面優於文獻中現有的啟發式算法。zh_TW
dc.description.abstractThis study considers a parallel batch processing machines problem to minimize the makespan under constraints of arbitrary lot sizes, incompatible families, start time windows, and machine eligibility determination. We first formulate the problem by a mixed-integer programming model and a lower bound for the studied problem is also provided. Due to the NP-hardness of the problem, we then develop a decomposition-based heuristic and an evolutionary algorithm to obtain a near-optimal solution for large-scale problems when computational time is a concern. A two-dimensional saving function is introduced to quantify the value of time and capacity space wasted. For the genetic algorithm, we propose a two-dimensional matrix and one-dimensional representation for encoding, and appropriate two-dimensional crossovers as well as mutations to generate offspring. In addition, the genetic algorithm aims to improve the quality of the solution found by the developed decomposition-based heuristic which is used as an initial solution for the developed genetic algorithm. Computational experiments show that the proposed heuristic algorithms perform well for small-size problems and can deal with large-scale problems efficiently within a reasonable computational time. Moreover, computational results also indicate that our proposed heuristics outperform an existing heuristic from the literature in terms of solution quality.en_US
DC.subject平行批次處理zh_TW
DC.subject時間窗口限制zh_TW
DC.subject機台合適度決定zh_TW
DC.subject分解法zh_TW
DC.subject儲蓄法zh_TW
DC.subject遺傳算法zh_TW
DC.subjectParallel batch processing machinesen_US
DC.subjectTime window constraintsen_US
DC.subjectMachine eligibility determinationen_US
DC.subjectDecomposition approachen_US
DC.subjectSavings methoden_US
DC.subjectGenetic algorithmen_US
DC.title具機台合不兼容系列時間窗口限制與適度決定之平行批次處理問題zh_TW
dc.language.isozh-TWzh-TW
DC.titleScheduling Parallel Batch Processing Machines with Incompatible Families, Time Window Con-straints and Machine Eligibility Determinationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明