DC 欄位 |
值 |
語言 |
DC.contributor | 資訊工程學系 | zh_TW |
DC.creator | 徐道婷 | zh_TW |
DC.creator | Tao-Ting Hsu | en_US |
dc.date.accessioned | 2017-7-19T07:39:07Z | |
dc.date.available | 2017-7-19T07:39:07Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=104522051 | |
dc.contributor.department | 資訊工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 隨著網路與行動裝置的普及,學生在磨課師平台上透過觀看教學影片自我學習已成為趨勢。不同於傳統學習模式,學生只要有網路與行動裝置便可隨時隨地的學習與掌握新知識,不再受到時間地點的限制。但由於在磨課師平台上教師無法與學生面對面教學,而使得教師無法掌握學生的學習狀況並進一步對學生進行輔導。因此如何提供學生學習狀態相關資訊給予教師作為對學生進行輔導的參考指標,以提升學生的學習意願與減少學習困難便是一重要課題。
根據統計資料顯示,學生於磨課師平台上最頻繁使用的功能為觀看教學影片。而吳志倫(2016)已研究以視覺化方式呈現學生對影片之操作行為,提供教師清晰明瞭之圖形以觀察學生行為,進而推知學生學習狀況。而透過視覺化影片操作行為,我們能找到學生有疑問的影片區段,輔助教師根據圖形找出影片需修改處進行修改,減少因遇到困難而停止學習之學生,但我們無法了解學生的實際觀看行為模式與學習成績間的關聯性。因此,本研究以學習分析來了解學生的觀看行為與學生學習成績間的關係,使教師能夠透過學生觀看影片行為掌握學生之學習狀態。本研究透過Multiple correspondence analysis與Lag-sequential Analysis兩種學習分析法,來找出對學生學習成績具有影響力的關鍵觀看行為模式。其中,利用Multiple correspondence analysis找出對整體學生最具影響性的觀看行為模式;而利用Lag-sequential Analysis找出高低成就學生的特殊觀看行為模式。透過本研究所提供之分析結果,教師可參考而對學習狀況較差之學生進行輔導,避免學生因遇到學習困難而放棄學習。 | zh_TW |
dc.description.abstract |
With the popularity of network and mobile devices, more and more students start to have the self-learning class by watching videos in massive open online courses (MOOCs). Students can gain new knowledge whenever and wherever they have a network and a mobile device. But because the teacher can not teach face to face with the students, which makes teachers unable to grasp the students’ learning situation and further intervening students. So how to provide students with learning status information to give teachers is an important issue.
According to the research, students spend most of their time on watching videos on the MOOCs platforms. To solve the problems above, we could make use of the action logs which MOOC platforms record while students using the system. In this study, we uses learning analysis to understand the relationship between students’ video viewing behavior and students’ achievement, so that teachers can find out the students’ status of learning through the students’ video viewing behavior. Through the multiple correspondence analysis and Lag-sequential Analysis, this study finds out the key video viewing behavior patterns which reflecting on students’ achievement. Through the analysis results provided by this study, teachers can find out the poor learning of the students to intervening, to avoid students give up learning due to learning difficulties. | en_US |
DC.subject | 學習分析 | zh_TW |
DC.subject | 磨課師 | zh_TW |
DC.subject | 影片觀看行為 | zh_TW |
DC.subject | 多重應對分析 | zh_TW |
DC.subject | 滯後序列分析 | zh_TW |
DC.title | 透過學習分析了解學生影片觀看行為 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | To understand Students‘ Video Viewing Behavior in MOOCs by Learning Analysis | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |