dc.description.abstract | With the scientific and technological advancements, the society which we live is facing the energy and environmental related problems such as pollution, deficiency of fossil fuels, and global warming. In order to resolve these issues, green-energy and renewable materials as well as their devices are demanded. Supercapacitors (SCs) exhibit high specific capacitance and power density, fast charge-discharge rate, and long cycle life. In addition, they are safe in operation and environmental friendly. Recently, micro-supercapacitors (MSCs) have attracted much interests since they can be further integrated into MEMS and CMOS.
In this study, we prepared all solid-state micro-supercapacitor by sputtering MoOx/Ag multilayers film as active material. We also tried natural mica flakes for substrate,which are transparent and flexible. It can also resistant to high temperature, acid and alkali. The configuration of the interdigitated structure and the thickness of the active material MoOx/Ag film are considered by their electrochemical properties, cycle stability and volumetric capacitance. It is confirmed by impedance analysis that the low conductivity defect of MoOx was effectively improved due to the incorporation of silver film. It makes its volumetric capacitance, energy and power density much higher than MoOx single-layer film.
The conductivity of the active material is essential for the high specific capacitance, power and energy density of pseudocapacitor. In order to investigate the changes in the properties of active materials after the charge and discharge cycles, various electrical and material analyses were performed on the multilayered MoOx/Ag films of the two substrates. | en_US |