dc.description.abstract | This study cuts into the idea of zinc-air battery electrolyte. In the water-based electrolyte, the battery is charged by using a composite additive to improve the coulombic efficiency, reduce the corrosion rate of the zinc negative electrode, and inhibit the formation of zinc dendritic structure during charge and discharge. The discharge efficiency is increased and the cycle life is prolonged. It was found that the quaternary additive was 3000 ppm 1-Methylpiperazine, 1500 ppm citric acid, 6000 ppm tartaric acid and 50 ppm PEI to achieve a maximum coulombic efficiency of 90.5%, reducing the corrosion current to 196 μA/cm2, It was confirmed from the SEM topography that the dendritic structure was hindered from being generated, and a rhombohedral structure was exhibited.
It is hoped that the zinc-air battery can be light and thin, and the polymer electrolyte design is beneficial to the physical flexibility of the zinc-air battery and the problem of electrolyte leakage. In this study, the process of colloidal electrolyte makes it easier to adsorb alkaline electrolyte. In the general environment, Charge and discharge the parts by stacking them into a full battery, regardless of the tightness problem.At a current density of 50 mA/cm2, the discharge voltage is approximately 1.1 V.
Seeking higher coulombic efficiency and suppressing the generation of hydrogen, this study used the high concentration of lithium hexafluoromethane sulfonate (LiTFSI) to greatly improve the efficiency to 96.3%, and the coulombic efficiency was almost unchanged after repeated cycles. It can be known that its stability is very good, and the SEM topography is a moss-like structure, which does not form a dendritic structure. | en_US |