博碩士論文 105522041 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator吳建穎zh_TW
DC.creatorJian-Ying Wuen_US
dc.date.accessioned2018-8-15T07:39:07Z
dc.date.available2018-8-15T07:39:07Z
dc.date.issued2018
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=105522041
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract生成對抗式網路(Generative Adversarial Network,GAN)[1] 是目前人工智慧最熱門的研究之一。GAN是一種強大的生成模型,其想法源自於博弈論的二人零和博弈,由一個生成器和一個判別器所組成,並透過對抗式學習的方式來達到訓練的效果。在以CNN為主軸的影像辨識工作上,在實務上遇到的第一個困難就是,如何蒐集大量的影像以供深度學習網路的訓練及測試使用。在虹膜辨識的演算法開發上,也有類似的問題。這篇論文中,我們提出了一種新的條件式生成對抗式網路,我們結合了WGAN-GP與一個獨立的分類器,使其能達到我們想要結果。運用此研究方法,可以根據我們自行設定的條件,產生某些特殊的影像,以此解決在進行深度學習實驗時訓練資料影像不足的問題,讓實驗達到更好的結果。zh_TW
dc.description.abstractGenerative Adversarial Network (GAN) is one of the most popular researches in the field of artificial intelligence. GAN is a powerful generation model. The idea is de-rived from the two-person zero-sum game of game theory. It consists of a generator and a discriminator. By simultaneously training these two models via adversarial net, both will become more powerful for the task they are designed to achieve. In the work of image identification based on CNN, the first difficulty in practice is how to collect enough images for the training and testing of the deep learning network. There are similar problems in the development of iris recognition algorithm. We construct a WGAN-GP combined with independent classifier, to achieve the de-sired results. Using this method, we can generate special images according to our condi-tions to solve the problem of insufficient image of training data in the course of deep learning experiments, and therefore, enhance the final recognition accuracy for the de-sired tasks.en_US
DC.subject生成對抗式網路zh_TW
DC.subject虹膜影像zh_TW
DC.subject影像辨識zh_TW
DC.subjectGenerative Adversarial Networken_US
DC.subjectIris imageen_US
DC.subjectImage identificationen_US
DC.title以生成對抗式網路產生特定目的影像—以虹膜影像為例zh_TW
dc.language.isozh-TWzh-TW
DC.titleUsing Generative Adversarial Network to Automatically Generate Images for Special Purpose: A Case Study for Particular Iris Imagesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明