博碩士論文 105523052 完整後設資料紀錄

DC 欄位 語言
DC.contributor通訊工程學系zh_TW
DC.creator鍾元禎zh_TW
DC.creatorYUAN-ZHEN,ZHONGen_US
dc.date.accessioned2018-7-18T07:39:07Z
dc.date.available2018-7-18T07:39:07Z
dc.date.issued2018
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=105523052
dc.contributor.department通訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract隨著4G邁入5G的時代,然而因為5G得到來,將為物聯網帶來極大的衝擊,能夠有更多的支援無線設備的連入和支援龐大的數據流量,並且以低於現今成本的聯網服務。而在5G正式上路之前,低功耗廣域網路(Low Power Wide Area Network,LPWAN)提供產業持續前進的動力,其中較受注目的包括使用授權頻段的NB-IoT(NarrowBand-IoT) 。近來,NB-IoT (FDD)的應用可能會受到在LTE (TDD)的架構下影響,當NB-IOT小基地台利用LTE的頻段進行上行資料傳送,在使用LTE的頻段的時候,會受到附近的LTE大基地台(Marco cell)的下行功率溢漏干擾。 為此,本篇論文即是研究在NB-IoT (FDD)在LTE (TDD)的環境下,如何有效且精準的配置功率。 最後模擬的結果可以看出本論文提出的KM-Q演算法在任何溢漏環境下都能夠配置出較佳的功率參數,並建立溢漏迴歸模型作為防止溢漏干擾之最終目標。zh_TW
dc.description.abstractThe 5G is coming soon after the 4G, the 5G will bring a great impact on the Internet of Things.It will be able to support the connection of wireless devices and support huge data traffic. It will provide IoT services at lower cost than today. Before the 5G is opened officially,The LPWAN (Low Power Wide Area Network,LPWAN) provides the power which the industry goes forward continually. It is worth noting that the use of licensed band NB-IoT (NarrowBand-IoT). Recently, the NB-IoT (FDD) application possibly can be affected by the LTE (TDD) construction. When the NB-IoT small base station uses the LTE frequency band for the uplink transmission.It can be interference by downlink power to leak from nearby the LTE eNB (Marco cell). For this reason, this paper proposed the NB-IoT (FDD) how to effectively and accurately allocate the power under the LTE (TDD) environment. Finally,it simulates the result indication the KM-Q algorithm which this paper proposed in any leakage environment all to be able to show the better power parameter, and establishes the leakage regression model achievement to prevent leakage the interference for the ultimate goal.en_US
DC.subjectLTEzh_TW
DC.subjectNB-IoTzh_TW
DC.subject機器學習zh_TW
DC.subject功率分配zh_TW
DC.subjectLTEen_US
DC.subjectNB-IoTen_US
DC.subjectMachine Learningen_US
DC.subjectPower Allocationen_US
DC.title透過機器學習降低NB-IoT網路的通道干擾之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleThe Study of reduction of channel interference in NB-IoT networks through Machine Learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明