DC 欄位 |
值 |
語言 |
DC.contributor | 統計研究所 | zh_TW |
DC.creator | 林庭羽 | zh_TW |
DC.creator | Ting-yu Lin | en_US |
dc.date.accessioned | 2019-8-22T07:39:07Z | |
dc.date.available | 2019-8-22T07:39:07Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106225015 | |
dc.contributor.department | 統計研究所 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 如果數據包含異常值與多重共線性時,則通常相較於最小平⽅法會選用 Ridge M-estimator(Silvapulle 1991)。因為當數據同時具有異常值與多重共線性的情況下,Ridge M-estimator 會有較小的MSE。許多的估計量,例如:Pretest M-estimators, Stein-type shrinkage M-estimators,都類似Ridge M-estimator。然⽽現在所有的ridge estimators 和M-estimators 都沒有考慮截距項的收縮估計。因此存在改進現有估計量的空間,可透過改進截距項的估計⽽達成。在本⽂中,我們透過引⼊截距項的估計⽅法,在線性模型中引⼊新的 robust estimators 的估計。為了說明,我們分析了從數據提取系統(KGUSBADES)提供的Nikkei NEEDS 公司財務數據。本論⽂是與Kwansei Gakuin ⼤學的Jimichi Masayuki 博⼠及其同事合作的⼀部分。但是,所有統計分析都是由作者進⾏的。 | zh_TW |
dc.description.abstract | If the data contains outliers and multicollinearity, the ridge M-estimator (Silvapulle 1991) is the preferred estimator to the usual least square estimator. In fact, the ridge M-estimator has the smaller mean square error in the presence of outliners and multicollinearity. Many other estimators, such as the pretest M-estimators and Stein-type shrinkage M-estimators follow similar approaches to the ridge M-estimator. However, all the existing ridge and M-estimators do not consider shrinkage
estimation for the intercept term. Hence, there is a room for improving the existing estimators by improving the estimator of the intercept. In this thesis, we introduce new robust estimators of regression coefficients in a linear model by introducing a pretest estimation method for an intercept. For illustration, we analyze the Nikkei NEEDS corporate finance data that are provided from the
data-extraction system (KGUSBADES). This thesis is part of collaboration with Dr. Jimichi Masayuki and his
olleagues in Kwansei Gakuin University. However, all the statistical analyses are conducted by the author. | en_US |
DC.subject | 異常值 | zh_TW |
DC.subject | 多重共線性 | zh_TW |
DC.subject | 影響函數 | zh_TW |
DC.subject | 脊迴歸 | zh_TW |
DC.subject | Influence function | en_US |
DC.subject | Multicollinearity | en_US |
DC.subject | Outlier | en_US |
DC.subject | Robust estimator | en_US |
DC.subject | Ridge estimator | en_US |
DC.title | A shrinkage robust ridge estimator with an intercept term | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |