博碩士論文 106225019 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator翁許瑋zh_TW
DC.creatorHsu-Wei Wengen_US
dc.date.accessioned2019-8-22T07:39:07Z
dc.date.available2019-8-22T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106225019
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在本文我們指出並解決在Song et al.(2018)中的兩個問題。第一,我們描述了他們使用的半參數模型對時間尺度具有估計的不變性,並指出我們在運用Song et al.(2018)所提供的R程式套件進行估計時,結果並無具備這個性質。第二,我們發現他們的模擬設定不符合他所使用的半母數模型的假設,這可能導致模擬結果的不可靠。我們提供了一個正確的R程式碼並使用較合適的模擬設定來分析,並用以一個真實資料的例子來分析。zh_TW
dc.description.abstractIn this article we indicate and solve two issues found in Song et al.(2018). First, we characterize the time-scale invariant property of the semi-parametric model they utilize, and show that their R package provides different results after time scaling. Second, we find the setting of their main simulation does not follow the assumptions of the utilized model, which may lead to an unreliable conclusion. We provide corrected R code for practical use, and give an appropriate simulation setting to illustrate the behavior of the utilized model in a real-data example.en_US
DC.subject增廣估計方程式zh_TW
DC.subject時間尺度不變性zh_TW
DC.subject半母數模型zh_TW
DC.subjectaugmented estimating equationen_US
DC.subjecttime-scale invarianten_US
DC.subjectsemi-parametric regressionen_US
DC.titleNew insights on ′′A semi-parametric model for wearable sensor-based physical activity monitoring data with informative device wear"en_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明