dc.description.abstract | The thesis of this research is the TNCU treatment system, which removes carbon, nitrogen, removal and phosphorus from water through the action of microorganisms in order to meet the purpose of running water standards. The general TNCU wastewater treatment system is a semi-open system, and the external environment changes. It will affect the characteristics of sewage water quality, and the current sewage treatment system design mostly uses steady-state mathematics. The sewage treatment plant operation method uses fixed operation and control methods, and the manual water quality detection and measurement methods require a lot of human resources, material resources, and financial resources. In addition, it is difficult to quantify the energy conversion process of various substances by the microbial flora composition and the microorganisms themselves, and cannot cope with the dynamic sewage treatment system where the inflow of the system and the water quality and quantity of the tanks of the system change. Facing the entire processing system, it presents a highly complex relationship, and it is more comprehensive and user-friendly than the traditional control system in the unstable dynamic system by using the system dynamic mode. Therefore, this research is mainly to analyze the system dynamics model can quantify non-structural problems, analyze the relationship and operation mechanism between various substances and microorganisms in the system with the concept of system dynamics, and develop and establish the TNCU system dynamic model based on this., As the input parameter of the system power mode operation and calculate the system output water quality to evaluate and find out the cause of the TNCU system problem. I expect it to improve the stability of the system output water quality for subsequent system operation control and maintenance management of the TNCU system Decision-making tool for normal operation. The TNCU system of this study should conform to the reaction trend of the microbial reaction mechanism, and it must also conform to the purpose of simultaneous nitrogen and phosphorus removal in the sewage treatment system. Therefore, the model of this study can apply to the sewage treatment system and simulated by the evaluation procedure. Different adjusted system conditions to meet the purpose of the TNCU system function. Solve the problems that many wastewater treatment plants have no basis in design and I designed most of them based on the experience of designers. | en_US |