DC 欄位 值 語言 DC.contributor 材料科學與工程研究所 zh_TW DC.creator 葉恩信 zh_TW DC.creator En-Sin-Ye en_US dc.date.accessioned 2019-8-22T07:39:07Z dc.date.available 2019-8-22T07:39:07Z dc.date.issued 2019 dc.identifier.uri http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106329011 dc.contributor.department 材料科學與工程研究所 zh_TW DC.description 國立中央大學 zh_TW DC.description National Central University en_US dc.description.abstract 本研究的第一部分,主要比較離子液體1 m Lithium bis(fluorosulfonyl)imide (以下稱為LiFSI) 溶於N-Propyl-N-methylpyrrolidinium bis(fluoromethanesulfonyl)imide (以下稱為PMP-FSI)、1 m Lithium bis(trifluoromethanesulfonyl)imide (以下稱為LiTFSI)溶於N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (以下稱為PMP-TFSI)、以及傳統有機電解液1 m LiPF6/EC-DEC-5wt% FEC應用在Si/Li半電池的差別。 其中,1 m LiFSI/PMP-FSI電解液具有高離子導電率,在室溫時高速2 A/g與低速0.1 A/g的放電電容值的維持率高達48.6%;但是在高電壓環境下FSI-陰離子會腐蝕鋁基材,而有機碳酸酯電解液與TFSI-based即使具備高電壓穩定性,兩者在矽負極的表現卻不如FSI-based離子液體電解液來的優秀。為了尋找同時具備高電壓穩定性以及負極穩定性的電解液,本研究嘗試將LiFSI鹽類溶解於不同種類的碸,結果發現,高濃度LiFSI/碸類電解液能夠在石墨負極上達到穩定的充放電庫倫效率(99 %於第五圈0.1 A/g電流速率),但在矽負極則無法完成正常充放電。 延續第一部分的結果,在第二部分針對1 m LiFSI/PMP-FSI改質。首先在離子液體中導入不同碸類來提升電解液的耐高壓性能,結果顯示,添加50%的Ethyl isopropyl sulfone (以下稱為EiPS)的混合電解液較其他碸類具有最佳的矽負極高速電容量值維持率(41%),但導入碸類卻伴隨著離子導電率的下降,此外,在混合系統的基礎下(PMP-FSI與EiPS 依不同比例混合,在本文以” % EiPS “ 表示碸類的體積比例),提高鋰鹽濃除了可以提升矽負極的高速電容值及電容值維持率,在3 m LiFSI/50% EiPS電解液中為(1277 mAh/g @2 A/g ;56% CE),超越純離子液體的效能,也抑制鋁腐蝕反應。在眾多嘗試中,發現3 m LiFSI/50% EiPS、3 m LiFSI/75% EiPS能成功抑制鋁腐蝕並且得到優異的LiNi0.8Mn0.1Co0.1O2正極充放電性能,其中3 m LiFSI/50% EiPS比3 m LiFSI/75% EiPS具有更加優良的高速性能,在2 C與0.1 C放電電容值以及高速維持率分別達到(134 mAh/g @ 2C ; 204 mAh/g @ 0.1 C ;66% CE)與(94 mAh/g @ 2C ; 161 mAh/g @ 0.1 C ; 58% CE)。 在第二部分發現混合系統確實有其優勢,但以LiFSI作為鋰鹽對於抑制鋁基材腐蝕的能力有限,且成本較昂貴,所以在此章節將鋰鹽更換為陰離子較大的LiTFSI期望得到與第一部分相近的結果。相比LiFSI的混合系統,LiTFSI展現出較低的離子導電度、較高的黏度,而且在2 m濃度下展現出該鹽類之最佳性能。2 m TFSI/50% EiPS分別於正極展現了59%的高速維持率以及121 mAh/g的高速電容值,負極則為45%的高速維持率與951 mAh/g的高速電容值,就負極而言,雖然較低於第一部分的性能,但在不同充放電速率的庫倫效率皆略高於以LiFSI作為鹽類的電解液。 zh_TW dc.description.abstract At the first part, we find FSI-based ionic liquid has better electrochemical stability than conventional organic electrolyte in silicon anode; and it is non-flammable, but FSI- anion will corrode aluminum foil, so it can not be used for the cathode material which working potential is over than 4.0 V. The sulfone-based electrolyte has a very wide electrochemical window, but the formation of the SEI layer in the anode need the help of LiFSI salt. Moreover, even if the LiFSI concentration is increased, the silicon electrode still cannot be stabilized. Second part, we add sulfone solvent into FSI-based ionic liquids and increase the concentration of lithium salts. The result effectively improved the performance of ionic liquid in LiNi0.8Mn0.1Co0.1O2 cathode materials. In the LiFSI series mixed electrolyte, the high-current retention and the specific capacity of 3 m LiFSI/50% EiPS is 56% @ 2 A/g, 1277 mAh/g for silicon anode, on the other hand, the performance for cathode is 66%, 134 mAh/g. The retention of 200 cycle life for the anode at the rate of 1 A/g exhibits 63.1%, which is higher than pure FSI-based ionic liquid that only have 48.6% high rate retention. Due to the corrosion issue and costing down, in the last part, the lithium salt is replaced with a larger anoin, LiTFSI. Compared to LiFSI hybrid system, LiTFSI exhibits lower ionic conductivity, higher viscosity, and exhibits the best performance of the salt at a concentration of 2 m in this salt. 2 m LiTFSI/50% EiPS exhibits a high-rate retention of 59% and a high-rate capacitance of 121 mAh/g on the cathode, and a high-rate retention of 45%, high-rate capacity of 951 mAh/g on the anode. Although the performance of this part is lower than previous, the coulombic efficiency in different current rate is slightly higher than that using LiFSI salt. en_US DC.subject 鋰離子電池 zh_TW DC.subject 離子液體 zh_TW DC.subject 矽負極 zh_TW DC.title 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料 zh_TW dc.language.iso zh-TW zh-TW DC.title Mixture of ionic liquid and sulfone electrolyte for silicon anodes of lithium-ion batteries en_US DC.type 博碩士論文 zh_TW DC.type thesis en_US DC.publisher National Central University en_US