博碩士論文 106456027 完整後設資料紀錄

DC 欄位 語言
DC.contributor工業管理研究所在職專班zh_TW
DC.creator徐紹銘zh_TW
DC.creatorSHAO-MING SYUen_US
dc.date.accessioned2019-7-24T07:39:07Z
dc.date.available2019-7-24T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106456027
dc.contributor.department工業管理研究所在職專班zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract隨著TFT-LCD技術進步飛速及廣泛應用,TFT-LCD面板已是電子產品中關鍵零組件之一,台灣是國際主要面板供應商前三名,市占率達32%;近年來隨著大陸地區產能開出,以及面板報價仍持續下跌,面板製造商在有限成本下透過持續改善產品良率及維持客端品質維護公司聲譽。面板產業雖已是高度自動化生產,仍期許透過智慧工廠、智慧製造、大數據、AI功能充分運用現有資源分配,有效將異常攔檢於工廠內,以降低異常品流至客端所產生額外的費用以及商譽的損失。由於OQC(Outgoing Quality Control)抽樣所批退的異常面板與客戶端所反應異常無明顯趨勢,且客戶端生產線批退率VLRR(Vendor Line Reject Ratio)一直無法有效降低;本研究藉由導入精準抽樣模型,提升OQC於出貨前抽樣檢驗攔檢能力,能有效極大化抽檢不良率,並透過分群抽樣概念,使異常品能有效地被抽中,藉由異常品批退須拉回做重工或是再次檢驗的動作,也有效降低客端VLRR、客端因不良停線重工成本費用,而在無形中也提升了公司的聲譽。 本研究首先介紹TFT-LCD液晶顯示器製程以及面板常見的不良品缺陷種類,目的為說明建立精準抽樣模型主要依據是透過客退品解析主要異常問題所建立分群的模型,在人力限制情況下對分群後樣本執行抽樣檢驗,藉由最佳化分配各群組抽樣數量,預期使用此模型可使抽樣不良率極大化,在提升OQC在人力資源分配限制情況下可以抽樣到最大不良率的最大效益。 zh_TW
dc.description.abstractWith the technology improved and widely used of TFT-LCD and it have become key electronic components. Taiwan is the top three of panel makers and market share of 32% in the world. In recent years, production capacity increase of the China and panel prices continue to fall. Panel maker maintain the company reputation at the limited cost by continuously improving product yields and maintaining customer quality. Although panel maker is already highly automated production in panel industry, it is still pursue to make full use of existing resource allocation with intelligent factories, intelligent manufacturing, big data, and AI functions. It can effectively intercept abnormalities in the factory to reduce the extra sorting costs by abnormal product leakage to customer and lose of company reputation. Due to the trend of the abnormal panel percent ratio is not obviously with the OQC (Outgoing Quality Control) sampling reject and customer VLRR (Vendor Line Reject Ratio). Customer VLRR still has not been effectively reduced. In this research introduces the precision sampling model to improve OQC inspection capability before shipment, which can effectively maximize the sampling failure rate. The cluster sampling concept this action of reject the abnormal product to re-work or re-test can effectively reduce the cost of the customer′s VLRR and the customer′s failure to stop the product line, and invisibly increases the company′s reputation.en_US
DC.subject驗收抽樣zh_TW
DC.subject整數線性規劃zh_TW
DC.subject品質成本zh_TW
DC.subjectSampling planen_US
DC.subjectLinear programmingen_US
DC.subjectInteger programmingen_US
DC.subjectQuality costen_US
DC.title智慧面板廠應用精準抽樣規劃求解最佳人力配置zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明