博碩士論文 106521023 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator何偉誠zh_TW
DC.creatorWei-Cheng Hoen_US
dc.date.accessioned2019-8-22T07:39:07Z
dc.date.available2019-8-22T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106521023
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文針對新型加強型氮化鎵高電子遷移率電晶體(New E-mode GaN HEMT)之元件電性研究進行探討,研究對象為:(1) 加強型氮化鎵高電子遷移率電晶體;(2) 於元件主要閘極與汲極間加入第二閘極,並與源極端相連接之新型加強型氮化鎵高電子遷移率電晶體。實驗結果分別量測不同結構元件的直流電性,並與單閘極結構之加強型氮化鎵高電子遷移率電晶體元件進行比較,預期達成利用第二閘極在導通並且高電流的情況下能抑制其汲極飽和電流(ID,sat)以達到更好的短路能力(short-circuit capability)效果。 實驗流程包含新型加強型氮化鎵高電子遷移率電晶體之元件特性模擬、佈局設計、元件製程以及元件量測;其中,元件模擬使用p-氮化鎵閘極高電子遷移率電晶體(p-GaN gate HEMT)達成加強型(Enhancement-mode)操作,在新結構之第二閘極設計分別為蕭特基接觸(Schottky contact)與金絕半接面(MIS)兩種。透過Silvaco TCAD軟體進行元件之電流特性模擬與基本電性觀察發現蕭特基第二閘極之新結構汲極飽和電流約降為傳統結構之12 %,金絕半第二閘極之新結構汲極飽和電流約降為傳統結構之62 %,導通電阻的上升幅度均在5 %以內。 元件製程方面則將蕭特基第二閘極設計加入至p-氮化鎵閘極高電子遷移率電晶體;金絕半第二閘極設計加入至閘極掘入式加強型氮化鎵金絕半場效電晶體(Recesses-gate E-mode GaN MIS-HEMT)中。量測結果可觀察到,蕭特基第二閘極之新結構汲極飽和電流約降低至單閘極結構的30 %,金絕半第二閘極之新結構汲極飽和電流約降低至單閘極結構的70 %;其中,金絕半第二閘極結構元件之導通電阻上升幅度在6 % 左右,此部分之電性表現與Silvaco TCAD模擬出來之趨勢相同。而亦可從此電性表現來說明透過新結構設計可改善加強型氮化鎵高電子遷移率電晶體在短路能力上之表現。 zh_TW
dc.description.abstractIn this study, the device characteristics of the new GaN high electron mobility transistor (HEMT) are discussed. The research focus on: (1) Enhancement-mode (E-mode) GaN HEMT; (2) A new type of E-mode GaN HEMT with a second gate between the main gate and the drain which is connected to the source. The experimental results compare the DC characteristics of different second gate E-mode GaN HEMT structure with the single gate E-mode GaN HEMT structure. Second gate structure can suppress the saturation current (ID, sat) under on-state and high current condition and it is expected that by the design of second gate, GaN HEMT can achieve a better short-circuit capability. The experiment includes device simulation, layout design, device processing, and DC measurement of new GaN HEMT. Device simulation use p-GaN gate HEMT to achieve E-mode operation. The second gate design of the new structure is Schottky contact and MIS contact. Through the Silvaco TCAD simulation, the characteristics show that the Schottky second gate structure reduced ID,sat to about 12% of the single gate structure, the MIS second gate reduced ID,sat to about 62% of the single gate structure, and both of them the on-resistance is increased by less than 5%. In device processing, the Schottky second gate design is added to the E-mode p-GaN gate HEMT; the MIS second gate design is added to the Recesses-gate E-mode GaN MIS-HEMT. The measurement results show that the Schottky second gate structure is reduced to about 30% of the single gate structure, and the MIS second gate structure is reduced to 70% of the single gate structure; wherein the on-resistance is increased about 6%, and the electrical characteristics of measurement show the same trend as that simulated by Silvaco TCAD. From this electrical characteristics, it can be expected that the new structure design can improve the short circuit capability of GaN HEMT. en_US
DC.subject加強型zh_TW
DC.subject氮化鎵高電子遷移率電晶體zh_TW
DC.subject降低汲極飽和電流zh_TW
DC.subject第二閘極zh_TW
DC.subject短路能力zh_TW
DC.title新型加強型氮化鎵高電子遷移率電晶體之電性探討zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明