博碩士論文 106522063 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator李哲豪zh_TW
DC.creatorChe-Hao Lien_US
dc.date.accessioned2019-7-23T07:39:07Z
dc.date.available2019-7-23T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106522063
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract近幾年問題生成的研究發展迅速,過去以句子的語法結構定義規則生成問題,隨著深度學習成熟的技術,現今機器能理解語意並自動產生適當的問題。 問題生成的目標是給定一段文字訊息與答案,產生相對應的問題,與機器閱讀理解任務類似,因此閱讀理解的資料集常被用在問題生成任務中。以往問題生成模型的輸入並非整篇文章,而是包含答案的句子,但有些問題的內容和答案不在同一個句子,可能是依據其他句子資訊產生該答案的問題,於是本論文提出一個新架構,由句對模型和問題生成模型所組成,利用句對模型處理文章結構,將每一句資訊與包含答案的句子進行匹配,計算各自的相關程度並且重新賦予句子權重,接著傳送到問題生成模型產生最終的問題。句對模型主要目的是從整篇文章中自動找尋和答案有關的內容進而產生適合的問題。 實驗結果表示,我們的系統能有效處理文章結構,相比只有問題生成模型的系統,在中文和英文的資料集都有更好的表現。zh_TW
dc.description.abstractIn recent years, question generation (QG) has developed rapidly. In the past, using rules that are based on syntactic structure to generate questions. Nowadays, the machine can understand semantic and automatically generate appropriate questions with a proven technique of deep learning. Question generation aims to generate corresponding questions from a given passage and answer. It is similar to machine reading comprehension (RC) task. Therefore, reading comprehension dataset is often used to question generation task. The input of the previous question generation model is the sentence containing the answer rather than the whole article. However, the content of some questions and its answers are not in the same sentence. The question may be based on other information in sentences. Then, our paper proposed a new framework which consists of sentence pair model and question generation model. Using the sentence pair model to process article structure. Its method is matching each sentence and the sentence containing the answer to compute the respective degree of correlation to reweight sentences and then produce questions by question generation model. The main purpose of sentence pair model is to automatically find the content related to the answer from the article. Experiment results show that our system can handle article structure. In contrast to a system with only question generation model, our system has better performance in Chinese and English dataset.en_US
DC.subject問題生成zh_TW
DC.subject閱讀理解zh_TW
DC.subject序列到序列zh_TW
DC.subject注意力機制zh_TW
DC.subject複製機制zh_TW
DC.subject句對模型zh_TW
DC.subject深度學習zh_TW
DC.subjectQuestion Generationen_US
DC.subjectReading Comprehensionen_US
DC.subjectSequence to Sequenceen_US
DC.subjectAttention Mechanismen_US
DC.subjectCopy Mechanismen_US
DC.subjectSentence Pair Modelen_US
DC.subjectDeep Learningen_US
DC.title使用句對模型在文章中抓取相關資訊用於問題生成zh_TW
dc.language.isozh-TWzh-TW
DC.titleUsing Sentence Pair Model to Capture Relevant Information from Document for Question Generationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明