博碩士論文 106522112 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator韋岱延zh_TW
DC.creatorDai-Yan Weien_US
dc.date.accessioned2019-8-13T07:39:07Z
dc.date.available2019-8-13T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106522112
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文研究提出基於畫面內容之多運算子影像尺寸調整機制,希望在顯示畫面於不同輸出設備時仍能保持畫質,本研究亦提出適用於此應用的畫質衡量模型,合理評估原始影像與修改後影像的差異。首先我們改良多運算子畫面調整機制SCAN,它包含了圖縫裁減(Seam carving)、邊緣裁切(Cropping)、增加圖縫(Add seams)與畫面縮放(Normalization)。本研究主要改善邊緣裁切步驟,透過前景物偵測將影像分類,根據類別及畫面中的物體以不同的視覺顯著圖決定適當裁切位置。此外,我們加入人臉與建築物偵測,避免出現於畫面邊緣的人臉可能遭受不當裁切,並判斷建築物是否為畫面重要內容。實驗結果顯示所提出的改良式多運算子畫面調整機制在各式影像中能有效維持內容完整。在畫質衡量模型中,我們利用SIFT Flow比較原始影像及濃縮影像的內容差異,考量可能出現的幾何扭曲及線段扭曲,根據畫面顯著物及語意相關程度,以類神經網路迴歸分析找出平均意見分數(MOS)對每種屬性的依據,進而得到更貼近於人眼主觀感受的評估。實驗結果顯示,與其他評估方法相較,我們所提出的模型更貼近於MOS的結果。zh_TW
dc.description.abstractThis research proposes a content-based multi-operator image retargeting scheme, enabling the retargeted images to preserve its content after adaptation in various displays. Besides, a quality evaluation model is also proposed to compare original images and retargeted images. The proposed multi-operator retargeting scheme is termed “SCAN” as it contains Seam caving, Cropping, Adding seams and Normalization (scaling). This research mainly concentrates on improving the step of content-based cropping in SCAN. We classify images into two categories via foreground detection and adopt different types of visual saliency to determine appropriate cropping limits. The face detection is also introduced to protect face areas appearing at the edges of an image from being removed. A building detection mechanism is employed to determine whether a building in an image is significant or not. The experimental shows that the improved multi-operator retargeting scheme can effectively preserve the content and objects’ shape when dealing with various images. In the proposed quality evaluation model, we make use of SIFT Flow to compare the contents of original and retargeted images and identify possible geometric distortion and line distortion. We further consider salient objects and image semantics in the evaluation process. With these attributes, we utilize the neural network regression model to determine the weights of every feature in order to fit the Mean Opinion Score (MOS). The results show that the proposed model is closer to MOS than other evaluation methods.en_US
DC.subject多運算子畫面調整機制zh_TW
DC.subject前景物偵測zh_TW
DC.subject濃縮影像品質衡量zh_TW
DC.subjectSIFT Flowzh_TW
DC.subject線段扭曲zh_TW
DC.subject幾何扭曲zh_TW
DC.subject迴歸分析zh_TW
DC.subjectMulti-Operatorsen_US
DC.subjectForeground Detectionen_US
DC.subjectRetargeten_US
DC.subjectQuality Evaluationen_US
DC.subjectSIFT Flowen_US
DC.subjectLine Distortionen_US
DC.subjectGeometric Distortionen_US
DC.subjectRegression Analysisen_US
DC.title基於內容分析之多運算子畫面尺寸調整與品質衡量機制zh_TW
dc.language.isozh-TWzh-TW
DC.titleContent-Based Multi-Operator Retargeting and Its Quality Evaluationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明