DC 欄位 |
值 |
語言 |
DC.contributor | 通訊工程學系 | zh_TW |
DC.creator | 陳毓琇 | zh_TW |
DC.creator | Yu-Hsiu Chen | en_US |
dc.date.accessioned | 2019-8-21T07:39:07Z | |
dc.date.available | 2019-8-21T07:39:07Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106523052 | |
dc.contributor.department | 通訊工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 室內定位至今已發展有一段時間,有很多相關的研究像是場景辨識
以及導航,現有的深度學習定位方法需要大量附有正確相機位置的圖
像,這篇論文主要利用同時定位與建立地圖(SLAM)算法所生成的三
維地圖解決定位問題,我們使用投影方法從3D地圖生成訓練數據,此方
法可以產生在3D地圖中任何地方的圖像,並且帶有準確的位置訊息,我
們也結合了B-CNN[12]所形成的縮放地圖和深度學習解來決定位問題。 | zh_TW |
dc.description.abstract | Indoor localization has been developed for many years. There are many
related works like scene recognition and navigation. Existing deep learning
positioning methods require a large number of images with the correct camera position. This paper mainly solves the positioning problem by using the
3D map produced from simultaneous localization and mapping (SLAM) algorithm. In our positioning work, we use the projection method to produce
training data from the 3D map. This method can produce any place’s image
in the 3D map included accurate position information. We also combined BCNN [12] to reach a ”zooming map” and deep learning to solve the positioning
problem. | en_US |
DC.subject | 定位 | zh_TW |
DC.subject | 同時定位與建圖 | zh_TW |
DC.subject | 場景識別 | zh_TW |
DC.subject | 卷積神經網絡 | zh_TW |
DC.subject | Localization | en_US |
DC.subject | SLAM | en_US |
DC.subject | Place recognition | en_US |
DC.subject | Convolution Neural Network | en_US |
DC.title | 運用3D環境模型之視覺定位方法 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Visual Positioning with 3D Environment Model | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |