博碩士論文 106622021 完整後設資料紀錄

DC 欄位 語言
DC.contributor地球科學學系zh_TW
DC.creator黃俊銘zh_TW
DC.creatorChun-Ming Huangen_US
dc.date.accessioned2020-1-10T07:39:07Z
dc.date.available2020-1-10T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=106622021
dc.contributor.department地球科學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract台灣位於地震帶上,每月都會有數以千計的地震發生,但往往沒有足夠的人力可以消化地震資料。但在科技日新月異的今日,可藉由人工智慧的幫忙,在性質單一的任務下,電腦可以大幅降低人力負擔。2018 花蓮地震發生後的 12 天內,臨時地震網中就偵測到了超過 4,000 次餘震。雖然有許多文章提出了各種深度學習解決方案,但學術研究與實際工作流程之間還是有不小的差距,我們希望有個可以快速整合進生產流程的套件。 在本次的研究中,我們利用 Zhu 等人在 2018 年提出的 PhaseNet 作為設計藍圖。其中最重要的概念,是將人工挑選誤差以高斯分布的形式取代 P 波到時作為訓練標籤。除此之外,我們更進一步地將 PhaseNet 中的神經網路模型用新的UNet++ 取代,其重新設計的快速通道,比起原始版本的 U-Net 收斂速度更快。我們將開發的套件SeisNN開源,其利用 Obspy 作為主要 I/O 的套件,讀取 SEISAN 的 S-file 產生訓練資料集,並使用Tensorflow 2.0作為主要的深度學習框架。另外提供 Docker 映像檔與 Dockerfile 實現快速安裝與一致的開發環境設定。 以本實驗室的使用狀況,大部分收集回來的地震資料都只有垂直分量,而我們也只關心P波到時做後續的速度分析,所以將原本 PhaseNet 中的三分量資料縮減至單分量,輸出從P波、S波與雜訊三個類別縮減至單純的P波到時。我們使用三組不同的資料集進行訓練,分別是美濃資料集13,357筆、花蓮2017資料集30,852筆與花蓮2017資料集56,223筆。經過訓練後F1值分別0.729、0.918和0.925。 本研究利用過往實驗室累積的資料,經過人工智慧成功的簡化了繁瑣的挑波流程,在未來發展成熟後,就可以將此方法整合到既有的工作流程中。zh_TW
dc.description.abstractThere are thousands of earthquakes take places in Taiwan within a single month, but there are not enough researchers to process the data. Nowadays, researchers can leverage the power of artificial intelligence to accomplish repetitive tasks. In 2018, after the Hualien earthquake, our temporal station network detected over 4,000 aftershocks within 12 days. Although there are numerous methods have been proposed to tackle the problem, we need a real-world solution for our routine workflow. In this research, we design our toolbox based on PhaseNet which proposed by Zhu et al. in 2018. The main concept is labeling the phase picking time with a Gaussian distribution mask to represent the picking error. Furthermore, we swap the architecture from the well-known U-Net to its successor UNet ++, which redesigns the skip pathways to help the model converge faster. We develop our package SeisNN and open the source code to the public, using Obspy for data I/O, reading SEISAN s-file for generate training data and using Tensorflow 2.0 for the main deep learning framework. Besides, we provide Docker image and Dockerfile for fast deployment and uniform environment. In our scenario, most of the data we recover from the field are only contained Z component, on the other hand, because we only care the P arrivals for further processing, so we shrink down the network output from P, S, Noise to P arrivals only. We test our model on three different dataset: Meinong dataset with 13,357 training sets, Hualien 2017 dataset with 30,852 training sets and Hualien 2018 dataset with 56,223 training sets. After training, the according F1 score is 0.729, 0.918 and 0.925. In summary, this research utilize the historical data in our lab, successfully simplify the cumbersome picking process with artificial intelligence. After fully develop the toolbox, it can be integrated into our routine workflow.en_US
DC.subjectP 波到時zh_TW
DC.subject深度學習zh_TW
DC.subject自動挑波zh_TW
DC.subjectP arrivalen_US
DC.subjectDeep learningen_US
DC.subjectAuto-pickingen_US
DC.title利用深度學習為基礎的P 波自動挑波套件zh_TW
dc.language.isozh-TWzh-TW
DC.titleAn Automatic P Phase Picking Toolbox Using Deep Learning Methoden_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明