dc.description.abstract | The hydrological cycle has been proved that with the relationship between either land surface properties or cloud characteristics. The changes in surface vegetation might associate with the evapotranspiration rate, then further modify the precipitation pattern and surface temperature. On the other hand, precipitation type also has a relationship with clouds. However, there are not many studies on the response of cloud microphysical characteristics with land surface properties. Therefore, this study is focused on the investigation of the changes in surface vegetation that associates with cloud microphysical characteristics, in particular under the scenarios of deforesting and its recovery. The study area is the world′s third-largest island, Borneo, which has a large deforestation rate in recent decades. The satellite data is used Moderate-Resolution Imaging Spectroradiometer (MODIS) which adopted for study analysis from 2003 to 2018. The Normalized Difference Vegetation Index (NDVI) was applied to identify the land surface characteristics, while cloud fraction (CF), cloud top pressure (CTP), cloud optical thickness (COT), and cloud effective radius (RE) is adopted as the cloud microphysical features. Comparing the changes in NDVI with the previous studies that we can roughly divide data into two periods, one is the palm trees dominated and the other one is a mixed forest dominated. Trying to analyze the annual and seasonal climatology anomaly differences and changes in two types of land surface dominated. The results show that the characteristics of clouds tend to have larger cloud droplet sizes and optically thicker, less cloudy, and lower-level clouds during the palm tree dominated period than the mixed tree dominated. In most of the conditions, either dry or wet season, the palm tree dominant has a higher anomaly frequency than mixed tree dominant. The anomaly of COT and RE have a higher sensitivity to land properties than seasonal change. The overall results show that the deforestation of natural primary forests or planting single species of the palm may cause larger variability from the climatological cloud pattern over the study area. | en_US |