dc.description.abstract | In recent years, Prussian blue (PB) and its analogs have garnered much intention in the research. In particular, PB has a cubic lattice structure with highly aligned nanopores, which makes it a promising anode candidate with both high rate capability and extremely long cycle life (because of less distortion of its structure during the charging and discharging process).
This research mainly divided into two parts. The first part is to study the nanoparticle size and lattice structure of Na-FeFe PB samples that fabricated using different temperature. The second part is to study the performance of the battery made by using Na-FeFe PB as the anode material, including its initial specific capacity, stability of specific capacity, and the peak voltage(s) for redox reaction.
In the first part of this research, the peak position of X-ray diffraction profile was studied by using both experimental and theoretical approaches. The experimental results were then compared to the theoretical calculation and fitted by using GSAS software to confirm the lattice structure. The data of other parameters such as lattice constant, fractional position and occupancy of atoms, molecular bond lengths, electron cloud densities, etc. was obtained. The relationship between the nanoparticle size of PB and the fabrication temperature was discussed.
In the second part of this research, the Na-FeFe PBs were made as to the core materials of lithium battery anodes, and the performance of batteries was tested by using Acu Tech battery testing system. | en_US |