博碩士論文 107225010 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator黃子菱zh_TW
DC.creatorTzu-Ling Huangen_US
dc.date.accessioned2020-7-28T07:39:07Z
dc.date.available2020-7-28T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=107225010
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本文的主要目標是建構可提供超額報酬的彈性投資組合。我們基於機器學習技術和卡爾曼濾波演算法進行共整合配對交易策略,並且使用五種不同的門檻來生成交易訊號。根據獲得的實證結果,我們認為以公差極限作為門檻的策略是更保守的投資組合,而使用風險價值界限作為門檻的策略是更積極的投資組合。此外,我們在冠狀病毒COVID-19大流行期間獲得了更高的報酬率。zh_TW
dc.description.abstractThe main objective of this thesis is to build a resilience portfolio that provides excess returns. Based on machine learning technology and the Kalman filter algorithm, we conduct a cointegration pairs trading strategy that uses five different thresholds to generate trading signals. According to the empirical results obtained, we believe that the strategy using the tolerance limits as the threshold is a more conservative portfolio, while the strategy using the Value at Risk bounds as the threshold is a more aggressive portfolio. In addition, we obtaine a higher rate of return during the coronavirus COVID-19 pandemic.en_US
DC.subject配對交易zh_TW
DC.subject統計套利zh_TW
DC.subject共整合zh_TW
DC.subject機器學習zh_TW
DC.subject卡爾曼濾波zh_TW
DC.subject風險價值界限zh_TW
DC.subject公差極限zh_TW
DC.subjectPairs tradingen_US
DC.subjectStatistical arbitrageen_US
DC.subjectCointegrationen_US
DC.subjectMachine learningen_US
DC.subjectKalman filteren_US
DC.subjectValue at Risk boundsen_US
DC.subjectTolerance limitsen_US
DC.titlePairs trading based on statistical learningen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明