博碩士論文 107225015 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator鄭宗倫zh_TW
DC.creatorChung-Lun Zhengen_US
dc.date.accessioned2020-7-15T07:39:07Z
dc.date.available2020-7-15T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=107225015
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在醫學檢驗疾病並研發新藥時,常使用配對設計來判定此藥是否有效,若此配對設計資料有遺失值時(missing data),則稱為部分成對資料。本文探討完全隨機遺失(missing completely at random, MCAR)的部分成對資料,此種資料因具相關性使得模型配適變得困難。本文主要的目的是利用強韌概似函數(robust likelihood function)方法,來分析部分成對資料。我們所建立的強韌概似函數,並不需要對該部分成對資料中的相關性建立模型假設,仍可得到正確的統計推論。zh_TW
dc.description.abstractIn medical research, the efficacy of the new drug is often decided by the paired design. The data of paired design that has missing values is called partially paired data. This article considers the partially paired data that is missing completely at random. It is hard to find a suitable model to analyze the correlated data.This article utilizes a robust likelihood function method to analyze the partially paired data. Using this robust likelihood function, we obtain correctly statistical inferences without modeling the correlated joint distribution of partially paired data.en_US
DC.subject強韌概似函數zh_TW
DC.subject成對資料zh_TW
DC.subject遺失值zh_TW
DC.subject完全隨機遺失zh_TW
DC.subjectRobust likelihood functionen_US
DC.subjectPartially paired dataen_US
DC.subjectMissing dataen_US
DC.subjectMissing completely at randomen_US
DC.title部分成對資料之強韌概似推論zh_TW
dc.language.isozh-TWzh-TW
DC.titleRobust likelihood inference for partially paired dataen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明