dc.description.abstract | Surgical navigation system is now widely used in clinics. They can assist doctors in completing operations more safely and accurately. It is widely accepted by physicians and patients nowadays. Surgical navigation system requires high-precision equipment and the integration of many related technologies to maintain its accuracy and stability, so the entire system is usually expensive. Compared with traditional camera, depth camera can not only acquire the color image of the environment, but also obtain the depth of objects in the field of view directly. Nowadays, depth camera has been widely used in the field of machine vision. It can be mounted on automatic vehicles, robotic arms, etc. Many manufacturers have also introduced consumer-grade depth cameras, which lower the threshold and cost of depth cameras. Depth cameras are usually used to sense the distance of things around. Therefore, if the depth camera can be used to replace the expensive sensors in the navigation system, the cost of the system can be greatly reduced.
The purpose of this research is to build a spatial positioning system based on consumer-grade depth cameras. This research combines color images, infrared images, depth information, etc. to find the location of the target through image processing and algorithms. In this research, the depth camera and the target are fixed on the slide rail, so we can make the target move a specific distance and measure the error of the experiment. The experiment includes measuring the error of the sphere center, the distance error of the dynamic reference frame, and the angle error of the dynamic reference frame, and each item includes the error measured at different distances. The minimum error of the fitting sphere can be within 3 mm, and the geometric similarity of the dynamic reference frame can reach more than 98%, the angular error is 2.74 degree on average. | en_US |