DC 欄位 |
值 |
語言 |
DC.contributor | 化學工程與材料工程學系 | zh_TW |
DC.creator | 王鵬華 | zh_TW |
DC.creator | Peng-Hua Wang | en_US |
dc.date.accessioned | 2020-8-13T07:39:07Z | |
dc.date.available | 2020-8-13T07:39:07Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=107324053 | |
dc.contributor.department | 化學工程與材料工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 能源危機深深影響著我們的社會和環境。尋找乾淨的替代能源成為當今重要且迫切的議題。與化石燃料相比,可再生能源有著對於環境友好且可永續發展的優勢。在可再生能源之中,氫能被視為最具潛力能源,因為氫氣燃燒過後只會產生水及能量。因此,發展可見光驅動的光觸媒水分解產氫至關重要。
過去的研究顯示將ZnIn2S4 (ZIS)可見光光觸媒包覆在具有二氧化矽外殼的金銀奈米粒子(Gold Silver-Nano Shell@ SiO2, GS-NS@SiO2) ,能夠藉由表面電漿共振效應有效提升產氫效率。由於GS-NS@SiO2不易合成,實驗以SiO2@ZIS作為主要研究重點,其原因是兩者的表面功能相同。我們若能從中理解ZIS反應機制,就能了解結構相關特性,從而優化產氫。
藉由改變硫代乙醯胺 (Thioacetamide, TAA)濃度及金屬前驅物的陰離子,發現可以調整其能隙值並且提升產氫。此外,研究顯示微調ZIS暴露面比例可以有效提升產氫,並提出合理的合成機制對其進行解釋。我們選擇了最佳產氫樣品,改變溫度及pH值兩大重要參數來探討其對產氫的影響。研究發現,在140 oC和pH = 3.45的條件下可以提高產氫效率。最後,本研究的目的是使SiO2 @ ZIS核層結構光觸媒將太陽能有效地轉化為氫能。 | zh_TW |
dc.description.abstract | Energy crisis impacts our society and environment. It is urgent to find clean and renewable energies. Compared with fossil fuel, renewable energies are more environmentally friendly toward sustainable development. Among renewable sources, hydrogen has the biggest decarbonization potential , because it only produces water and energy after combustion. Therefore, the advances of visible-light-driven photocatalysts for water splitting is critical.
ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst, being used in this research. Our previous studies revealed that the gold-silver nanoshells (GS-NS) with SiO2 buffer layer (GS-NS@SiO2) embedded in ZIS matrix exhibited a unique plasmonic-enhanced photocatalytic hydrogen production. Due to the difficulty of synthesizing GS-NS@SiO2, our research focused on the preparation of SiO2@ZIS, since the surface functionalities on SiO2 for both systems are the same. If we can understand the deposition mechanism of ZIS on SiO2, the structure-property relation can be realized. Thus, the hydrogen productions can be optimized.
By changing thioacetamide (TAA) concentration and the anions of metal salts in the precursor, it was found that energy band gap can be adjusted and hydrogen production efficiency can be improved. Furthermore, our research shows that delicate tuning the percentage of exposed facet can improve hydrogen production. A synthesis mechanism was proposed. Two important parameters, temperature and pH, were then varied to optimize hydrogen evolution rates. It shows that at 140 oC and pH=3.45 can improve hydrogen production. Finally, the purpose of this study is to effectively convert solar energy into hydrogen energy using SiO2@ZIS core-shell photocatalysts. | en_US |
DC.subject | ZnIn2S4 | zh_TW |
DC.subject | 光觸媒產氫 | zh_TW |
DC.subject | 殼層結構 | zh_TW |
DC.subject | ZnIn2S4 | en_US |
DC.subject | Photocatalytic hydrogen production | en_US |
DC.subject | Core-shell | en_US |
DC.title | 提升SiO2@ZnIn2S4奈米核殼結構光觸媒光催化產氫研究 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Improving Photocatalytic Hydrogen Productions based on SiO2@ZnIn2S4 Core-shell Particles | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |