博碩士論文 107522619 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator黎亞媞zh_TW
DC.creatorWhenty Ariyantien_US
dc.date.accessioned2020-8-20T07:39:07Z
dc.date.available2020-8-20T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=107522619
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract語音障礙是現代社會中最常見的醫學疾病之一,特別是對於有職業語音需求的人群。 在本文中,我們研究了一種通過組合聲信號和病歷對病理性語音障礙進行分類的堆疊式集成學習方法。 在提出的集成學習框架中,堆疊支持向量機(SVM)形成了一組弱分類器,並為元學習者提供了一個深度神經網絡(DNN)。 基於DNN的高度複雜性,將聲學特徵和病歷結合起來以獲得更好的分類性能。 與單個SVM和DNN分類器相比,具有更好的性能,並且具有顯著的優勢。zh_TW
dc.description.abstractVoice disorders are one of the most common medical diseases in modern society, especially for those with occupational voice demand. In this paper, we investigate a stacked ensemble learning method to classify pathological voice disorder by combining acoustic signals and medical records. In the proposed ensemble learning framework, a stacked support vector machine (SVM) form a set of weak classifiers and a deep neural network (DNN) for a meta learner. Based on the high complexity of DNN, acoustic features and medical records are combined to attain better classification performance. The better performance than single SVM and DNN classifiers with a notable margin.en_US
DC.subject病理性語音zh_TW
DC.subject聲學信號zh_TW
DC.subject集成學習zh_TW
DC.subject二進制分類zh_TW
DC.subjectPathological Voiceen_US
DC.subjectAcoustic Signalen_US
DC.subjectEnsemble Learningen_US
DC.subjectBinary Classificationen_US
DC.title論文題目集成和多模態學習用於病理性語音分類zh_TW
dc.language.isozh-TWzh-TW
DC.titleENSEMBLE AND MULTIMODAL LEARNING FOR PATHOLOGICAL VOICE CLASSIFICATIONen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明