dc.description.abstract | Due to the Internet of Things, the Internet of Vehicles is growing rapidly. Among them, because of the power-saving and low power consumption of ARM-based processors, the low cost, and the powerful SoC (System on a chip) can easily merge the peripheral I/O applications, it is easy to integrate many sensors and devices to be integrated together, and makes the client-side ARM processor architecture system more and more popular, and the functions are more and more diverse, so Android system is one of the most widely used systems because it can be highly customized and open source so that it extended the development from mobile phones to vehicle electronics.
However, due to its special use environment, vehicle electronics cannot continuously and stably supply power. For example, all electronic devices can only be powered by batteries after the car engine is turned off. Therefore, in order to reduce power consumption, most vehicle electronics will switch the system state to the power saving mode or Turn off the power and wait for the engine to start before switching back to the original working model. Therefore, how to shorten the time consumed by the embedded Android system during state switching has become an important solution.
The quick-start technology is mainly based on the embedded system′s characteristic, by optimizing the system′s data transmission and deleting unnecessary initial step so that the system can enter the working state in the shortest time. This study will use the existing acceleration technology to optimize the suitability the technology of the current Android system architecture, after experimental testing, the optimized performance reduces the startup time by 50% compared with before the optimization.
Keyword: Android system、Fast booting、U-Boot、Linux Kernel、Filesystem
| en_US |