DC 欄位 |
值 |
語言 |
DC.contributor | 大氣科學學系 | zh_TW |
DC.creator | 葉浩倫 | zh_TW |
DC.creator | Hao-Lun Yeh | en_US |
dc.date.accessioned | 2021-1-5T07:39:07Z | |
dc.date.available | 2021-1-5T07:39:07Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=107621019 | |
dc.contributor.department | 大氣科學學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在資料同化中,以往會假設觀測誤差彼此間是無相關的。為了避免觀測誤差相關性,在進行同化前,高解析資料通常會經過如超級觀測化(superobbing)或資料稀化(data thinning)策略來降低資料解析度。然而,這些策略犧牲了高時空解析度觀測在提供密集天氣資訊上的優勢。除此之外,在不加入觀測誤差相關性下,同化高解析觀測(例如:雷達徑向風)會低估分析誤差而產生過度擬合,進而降低分析及預報場的準確度。為了能更有效的使用高解析雷達資料以避免過度擬合,本篇研究提出在WRF雷達資料同化系統(WRF-LETKF Radar Assimilation System, WLRAS)中加入都卜勒雷達徑向風誤差相關性,並評估其對短期降水預報的影響。所利用的個案為2017年6月2日台灣北部的梅雨強降水事件,並同時同化雷達徑向風及回波資料。
本研究分為兩階段,第一部分利用觀測增量樣本估計徑向風水平方向上的觀測誤差相關性。結果顯示即便使用不同解析度之超級觀測,徑向風的誤差尺度皆約為25公里。接著,第二部分實驗將徑向風誤差相關性的估計結果加入至雷達資料同化系統中。由同化實驗結果可知,相較於不考慮觀測誤差相關性的實驗,同化徑向風觀測時加入觀測誤差相關性可產生空間上較小尺度的風場修正,而此風場修正會使得分析場在梅雨鋒面區域擁有較強的輻合、激發較多的局部對流,並伴隨較多的水氣量以及較強的西南風,進而提供對流良好的發展條件。風場與水氣場的修正隨後改善了回波及降水的預報。除了更好的單一預報表現之外,在機率定量降水預報(PQPF)當中,可以得知在同化系統中加入徑向風觀測誤差相關性後,系集能有更高機率預報出較為接近觀測的降水強度以及空間分布。另外,由每小時累積雨量預報FSS (Fractions Skill Score)得分之校驗結果得知,加入徑向風觀測誤差相關性之改善的效果可以維持約六小時。 | zh_TW |
dc.description.abstract | An assumption of uncorrelated observation errors is commonly adopted in conventional data assimilation. For this reason, high-resolution data is re-sampled with strategies like superobbing or data thinning. This also sacrifices the advantage of high temporal and spatial resolution observations that can provide essential detailed structures. However, assimilating the high-resolution data, such as radar radial wind, without considering the observation error correlation can lead to overfitting and thus degrade the performance of data assimilation and forecast. This study uses the radar ensemble data assimilation system, which couples the Weather Research and Forecasting model and Local Ensemble Transform Kalman Filter (WRF-LETKF), to assimilate the radar radial velocity and reflectivity data. We present a strategy to include the error correlation of the Doppler radar radial velocity in the WRF-LETKF radar assimilation system and examine their impact on short-term precipitation prediction based on the heavy rainfall case on 2nd June 2017 in Taiwan.
We first estimate the horizontal error correlation scale for radial velocity based on the innovation statistics. The error correlation scale is approximately 25 km. The introduction of correlated observation error for Doppler radar radial winds exhibits more small-scale features in the wind analysis corrections compared to the experiment using the independent observation assumption. Consequently, the modification on wind corrections leads to stronger convergence accompanied by higher water vapor content, and induces subsequent local convections, resulting in more accurate simulated reflectivity. For probability quantitative precipitation forecast (PQPF), our results show that the experiment using the correlated observation error has higher probability to generate heavy rainfall and agrees better with the observation. | en_US |
DC.subject | 資料同化 | zh_TW |
DC.subject | WRF-LETKF雷達資料同化系統 | zh_TW |
DC.subject | 觀測誤差相關性 | zh_TW |
DC.subject | 都卜勒雷達徑向風 | zh_TW |
DC.subject | Data Assimilation | en_US |
DC.subject | WRF-LETKF Radar Assimilation System | en_US |
DC.subject | Observation Error Correlation | en_US |
DC.subject | Doppler Radar Radial Wind | en_US |
DC.title | Impact of including observation error correlation for assimilating radar radial wind and its impact on heavy rainfall prediction | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |