dc.description.abstract | Considering the long healing time of chronic wounds, it is necessary to develop antibacterial dressings to avoid the risk of infection. Polylactic acid (PLA) is a frequently investigated dressing material due to its biodegradability and biocompatibility. However, its hydrophobicity makes it difficult to load drugs for sustained release. Therefore, in this study, mesoporous silica nanoparticles (MSN) were mixed with PLA to electrospin composite nanofibers for loading doxycycline hyclate (DCH), an antibiotic. These fibers owned high permeability. In addition, the added MSN not only increased thermal stability but also reinforced composite nanofibers, suggesting that composite fibers were suitable to physically protect wounds. The hydroxyl groups on MSNs increased the hydrophilicity to enhance the swelling rates of composite fibers, which not only promoted the absorption of wound exudate but also improved wettability of the composite nanofiber. Therefore, the release experiments showed that DCH delivery increased with the ratio of MSN in the composite nanofibers. Among them, D-P-M12 demonstrated an initial burst release, which thus significantly reduced proliferation rates of fibroblasts. However, other composite fibers did not occur this difficulty. Regrading antibacterial effects, D-P-M12 owned the largest inhibition zone in disc-diffusion experiments due to its initial burst release, but its antibacterial efficiency decreased over time. In contrast, the D-P-M10 group maintained 99% of antibacterial effects for 4 days. Therefore, D-P-M10 fibers were potential dressings for chronic wounds due to its stable antibacterial ability without causing cytotoxicity. | en_US |