dc.description.abstract | This study investigates strategies to improve dimensional accuracy in precision casting during the investment casting process. In practice, dimensional improvement in precision casting typically involves modifying the dimensions of the main mold. These modifications often require costly redevelopment of the main mold. To address this issue, we propose a two-stage wax injection method, which innovatively enhances the wax pattern dimensions without the need to remake the main mold. Instead, a small mold is created for the internal rough contour, and a two-stage wax injection process is employed to improve the dimensions of the manifold product. Our research reveals that the two-stage wax injection method exhibits better dimensional accuracy compared to the traditional direct wax injection method.
From an overall dimensional perspective, the average deviation between Scheme A and the design dimensions is 0.9 millimeters. However, the two-stage wax injection method reduces the average deviation of the original scheme to 0.65 millimeters, and further decreases the average deviation to 0.25 millimeters compared to the design dimensions. This indicates that the two-stage wax injection method, by reducing excessive shrinkage deformation in the manufacturing process of the manifold, lowers the shrinkage rate from 0.043 to 0.030, bringing the product closer to the design dimensions.
Additionally, this study compares rapid casting methods with precision casting methods and identifies similarities in terms of dimensional shrinkage. This suggests that rapid manufacturing techniques can be employed in the manifold development timeline, enabling the production of wax patterns within a few days without the need for metal molds. This helps to gain early insights into the casting shrinkage rate while reducing the time and costs associated with metal mold production during the development timeline.
The primary contributions of this study are twofold. Firstly, we propose the feasibility of using the two-stage wax injection method to enhance dimensional accuracy. Secondly, we demonstrate the consistency between the final products obtained from rapid casting 3D printed PLA models and investment casting, highlighting the value of rapid casting in manifold development. | en_US |