dc.description.abstract | This research proposes an innovative micro-stepping control method for stepping motors, referring to the high-precision sensor feedback angle, to adjust the leading angle and current of the motor stator simultaneously, that is, the leading angle-current dual-loop feedback control, referred to as ACDL feedback control. It is expected that while improving the positioning accuracy of the stepping motor, energy efficiency can also be taken into account. To achieve this goal, this research constructs the software and hardware of the micro-stepping motor control system. The hardware mainly includes a core microcontroller unit circuit, double H-bridge pulse width modulation drive circuit, current sensing circuit, and high-precision angle encoder readback circuit. The software takes the ACDL control algorithm as the core, cooperates with the correction of the angle encoder to achieve the accuracy required for positioning control, and can directly switch between ACDL and traditional control methods with the software. The peripheral software has the functions of data sampling, storage, and return communication for convenient experimental verification.
In order to demonstrate the superiority of the proposed method over traditional open-loop control and leading angle feedback control, we constructed a torsion test platform with a biased load. This platform was utilized to assess the variances in positioning accuracy and drive power among the three control methods, considering the presence of biased torsion loads. The findings reveal that the proposed control method outperforms the other two methods by enhancing positioning accuracy and reducing power consumption in a stepping motor.
Since this technology achieves high resolution and high accuracy using very inexpensive magnetic encoders. If it replaces the traditional stepping motor driver and expands its application in various positioning processes, such as 3D printers or aligners for integrated circuit manufacturing. In addition to improving the positioning performance of processing equipment, it can reduce the equipment cost invested in the manufacturing industry in the initial stage, and reduce the power consumption in the long run. Similarly, radar systems or missile seekers that require extremely high rotational precision control requirements can also use this algorithm and angle calibration technology to improve performance. | en_US |