dc.description.abstract | Abstract
Rising temperatures and extreme weather events are passing around the world as the result of global warming. During the decades, people have implemented many efforts to mitigate these impacts and achieve sustainable development. Be the parts of the economic sector, agricultural cultivation and food security have become emergent issues because of the growing population and exhaustion of natural resources. Aquaponics is innovative in sustainable agricultural cultivation, in which fish and plants create the nutrient cycle to mitigate sewage and fertilizers usage. Enhancing the sustainability of aquaponics encourages the integration of renewable energy (RE) to power the entire system. Scholars have started designing and assessing RE applications in aquaponics, but their contributions are still not much. Although RE benefits ecology, economy, and technology development, energy capacity planning requires a comprehensive evaluation because of the high investment cost and long-time operation.
This research analyzes meteorology data and related energy issues such as solar radiation, wind speed, power demand, and greenhouse structure to model the hybrid energy system (HES). In this context, the objective is to optimize electricity generation from solar and wind energy and adapt to the changing power demand and energy sources during the planning period. Concerning HES, a mixed-integer linear programming model (MILP) will determine the optimal solar array size, the units of wind generator, and storage system capacity. Besides, the proposed mathematical programming model will be executed on a successful aquaponics farm in Phu Quoc island, Vietnam. Main contributions accommodate the realistic solution for enhancing RE serving and storage efficiency, making aquaponics more sustainable in integrating solar and wind energy. This study determines the optimal HES size with minimal annual costs thanks to the balanced ratio between renewable and conventional energy. Farmers or investors, thus, can evaluate the investment they can afford annually. Meanwhile, carbon tax represents the environmental factor, affecting the GHG emissions emitted and motivating more RE use along with higher unit carbon tax. To achieve sustainable aquaponic systems, these findings above are the main outcomes but also indicate the future of RE that need to overcome the burden of storage cost and expect the price reduction, facilitate the penetration and reach 100% RE use in the entire system. | en_US |