博碩士論文 108521103 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator方紹宇zh_TW
DC.creatorShao-Yu Fangen_US
dc.date.accessioned2021-7-29T07:39:07Z
dc.date.available2021-7-29T07:39:07Z
dc.date.issued2021
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=108521103
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文提出了一種基於無人機的違規停車自動巡檢系統,執法人員只需設定好需要巡邏的路線,無人機便可在依照設定好的巡邏路線進行自主飛行並自動偵測路邊是否有違停車輛,當發現車輛違停時,無人機會壓低高度拍下違停照片、紀錄違停時間與車牌等資訊,並回傳歸檔,以供執法人員檢視,從設定路線完成後開始至巡邏結束,整個過程皆由系統自動執行,無需任何人員操作。該系統的功能有三大部分,第一部分為先從指定路徑得到對應之全球定位系統(Global Positioning System,GPS)的路徑座標點,加上無人機的飛行控制,沿所設路線巡邏違停。第二部分為違停辨識,對於台灣常見的四種違停情況,並排停車、紅線停車、反向停車、以及網格線上停車均能透過系統自動辨識出來,不管是汽車或機車也都適用。第三部分為無人機拍攝違停車輛之車牌、辨識車牌號碼以及其餘的違停資訊紀錄,當發現一輛違停的車輛時,系統會控制無人機飛至車輛斜後方,並使用物件偵測網路來偵測並得到目標車輛的車牌影像與號碼。本論文中我們使用YOLOv5偵測並辨識道路上的車輛、網狀線、車牌以及車牌號碼;使用霍夫線變換取得影像中道路線的位置;採用了EfficientNet分類網路來對車輛的朝向進行辨識;提出一種融合了分類與迴歸誤差計算的損失函數提升EfficientNet訓練的精準度;透過模糊控制器控制無人機的飛行姿態、前進或低飛拍照,相比於傳統人力的巡邏方式,可大大降低執勤員警的負擔。在本論文所設計之道路實驗測試中,該系統在四項違停情況中的辨識準確率為92.13 ,並且無人機的飛行控制可以克服五級風以下的影響,擁有優異的實測效果。 關鍵字:無人機、模糊控制、違停偵測、深度學習zh_TW
dc.description.abstractThis thesis proposes a drone based automatic inspection system for illegal parking. Using this system, traffic policeman sets the route to be patrolled, and then the drone can fly autonomously following the set patrol route and automatically detect illegally parked vehicles on the roadside. When an illegally parked vehicle is found, the drone will lower the altitude to take its license plate and record the information of the violation, then the photos and information will be sent back to the policeman traffic control center. The entire process is automatically performed without any personnel operation. The system’s function consists of three parts. The first part is to obtain Global Positioning System (GPS) coordinates for the set patrol route and to control the drone flying along the route for detecting illegally parked vehicles. The second part is to identify the vehicle with parking violation. Four common parking violations in Taiwan, side-by-side parking, red-line parking, reverse parking, and grid-line parking can be automatically identified whether the illegally parked vehicle is a car or a motorcycle. The third part is to capture the license plate of the illegally parked vehicle and to recognize the license plate number and other illegal information records. When an illegally parked vehicle is found, the drone will fly lower to the back of the vehicle and use the object detection network to detect the license plate and recognize characters on the license plate. This thesis uses YOLOv5 to detect and recognize ehicles, grid-lines, license plates and license plate numbers; applies Hough line transformation to obtain the position of the road board in the image; adopts EfficientNet classification network to identify the direction of the vehicle; proposes a loss function that combines classification and regression errors to improve the accuracy of the training of EfficientNet; and utilizes fuzzy control technique to control the flight attitude of the drone for correctly flying and photo taking. Compared with traditional manpower patrols, this system indeed greatly reduces the burden of the traffic policeman on duty. In the real road experiments, the system has an identification accuracy of 92.13% in four violation situations. Moreover, the flight control of the drone can overcome the influence of winds below grade 5. The overall experiment was very successful. Keywords: Drones, fuzzy control, parking violation detection, deep learningen_US
DC.subject無人機zh_TW
DC.subject模糊控制zh_TW
DC.subject違停偵測zh_TW
DC.subject深度學習zh_TW
DC.subjectdroneen_US
DC.subjectfuzzy controlen_US
DC.subjectparking violation detectionen_US
DC.subjectdeep learningen_US
DC.title取締違規停車之自主巡邏無人機zh_TW
dc.language.isozh-TWzh-TW
DC.titleAutomatic patrol drone for parking violation detectionen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明