博碩士論文 108522055 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator郭政言zh_TW
DC.creatorZheng-Yan Guoen_US
dc.date.accessioned2021-8-2T07:39:07Z
dc.date.available2021-8-2T07:39:07Z
dc.date.issued2021
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=108522055
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract生物認證系統在近年來已被廣泛的用在生活中,而如何提升安全性一直是重要的課題。以往基於靜態生物特徵的認證方法在各種偽造方法推陳出新之下已越來越容易被破解。而基於生物特徵序列的方法由於需以序列資料進行驗證,因此相對難以偽造,進而提升了安全性。 本文以神經網路實現了基於嘴唇影像及關鍵點序列的身分認證模型,並以本文提出的資料集進行訓練及測試。在一般認證實驗中,本文訓練的模型得到了 8.86% HTER的結果,證明了此模型對嘴唇影像及關鍵點序列資料的有效性。而為了測試輸入序列資料是否能達到提升安全性的目的,本文以靜態序列作為偽造資料輸入模型,得到了84.09% FAR 的結果,顯示了直接輸入序列資料對於提升安全性是沒有幫助的。為了抵 抗靜態序列攻擊,本文計算影像序列的影格差值作為輸入,最後在一般認證實驗中得到了 6.53% HTER 的結果,在靜態序列攻擊實驗中得到了 9.09% FAR 的結果,證明了嘴唇影像序列的影格差值在認證問題中的有效性及安全性。zh_TW
dc.description.abstractIn recent years, biometric authentication systems have been widely used in daily life, and how to improve security has always been an important topic. In the past, authentication methods based on static biometrics have become more and more easily cracked under various forgery methods. However, methods based on sequential biometric need to be verified with sequential data, so it is relatively difficult to forge, thereby improving the security. In this paper, an identity authentication model based on lip image and key point sequence is implemented by neural network, and the data set proposed in this paper is used for training and testing. In the general authentication experiment, the model trained in this paper obtained a result of 8.86% HTER, which proved the effectiveness of this model for lip image and key point sequence data. In order to test whether the sequence data can achieve the purpose of improving security, we input static sequences as the fake data to the model, and obtains a result of 84.09% FAR, which shows that directly inputting sequence data is not helpful for improving security. In order to resist the static sequence attack, we calculate the frame difference of the image sequence as input. Finally, the result of 6.53% HTER is obtained in the general authentication experiment, and the result of 9.09% FAR is obtained in the static sequence attack experiment, which proves the validity and safety of the frame difference of the lip image sequence in the authentication problem.en_US
DC.subject嘴唇zh_TW
DC.subject影像zh_TW
DC.subject序列zh_TW
DC.subject生物認證zh_TW
DC.subjectLipen_US
DC.subjectImageen_US
DC.subjectSequenceen_US
DC.subjectBiometric Authenticationen_US
DC.title基於嘴唇影像序列之生物認證zh_TW
dc.language.isozh-TWzh-TW
DC.titleLip-image-sequence-based Biometric Authenticationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明